1. Read Definition 2.8, Theorem 2.9 and Example 2.10 in the textbook (third edition) concerning Chomsky Normal Form and then put the following grammar into Chomsky Normal Form.

\[S \rightarrow T_a T \]
\[T \rightarrow a T b | b T a | T T | \varepsilon \]

3. Let \(M \) be the PDA given at the end of class on March 6 that recognizes the language \(\{ w \in \{ a, b \}^* | w \text{ has the same number of } a's \text{ as } b's \} \). (You can find \(M \) in the final frame of the lecture video.)

Show an accepting computation for \(M \) on the string \(aabbbaab \) by giving a chart with the state, tape contents, and stack contents after each step.

4. (a) Following up on a suggestion made by a student in class, give a PDA \(M' \) that recognizes the language of the previous problem, but does so in a non-deterministic way, meaning that whenever \$ \$ comes to the top of the stack, the PDA can either guess that it has reached the end of the input and go to an accepting state which is a sink state, or it can guess that it has not reached the end of the input and read an \(a \) or \(b \) without going to the accept state before reading the next symbol.

(b) Show an accepting computation for \(M' \) on the string \(aabbbaab \) by giving a chart with the state, tape contents, and stack contents after each step.

5. Give PDAs that recognize the following languages:

(a) \(\{ 0^n 1^n 2^n 3^m | n, m \geq 0 \} \).

(b) \(\{ x \# y | x, y \in \{ 0, 1 \}^* \text{ and } |x| = 2|y| \} \).

(c) \(\{ x \# y | x, y \in \{ 0, 1 \}^* \text{ and } |x| \neq 2|y| \} \).

Do not obtain your PDAs by converting context-free grammars for these languages into PDAs.