Conceptual Design.
The Entity-Relationship (ER) Model
Database Design Overview

- **Conceptual design**
 - The Entity-Relationship (ER) Model, UML
 - High-level, close to human thinking
 - Semantic model, intuitive, rich constructs
 - Not directly implementable

- **Logical Design**
 - The relational data model
 - Machine-implementable, fewer and more basic constructs
 - Logical design translates ER into relational model (SQL)

- **Physical Design** *(not in this course)*
 - Storage and indexing details
Conceptual Design – ER Model

- What are the entities and relationships in a typical application?
 - What information about these entities and relationships should we store in the database?

- What are the integrity constraints or business rules
 - Key constraints
 - Participation constraints

- Representation through ER diagrams
 - ER diagrams are then mapped into relational schemas
 - Conversion is fairly mechanical
Entities and Entity Sets

- **Entity**: represents a real-world object
 - Characterized using set of *attributes*
 - Each attribute has a *domain* – similar to variable types

- **Entity Set**: represents collection of similar entities
 - E.g., all employees in an organization
 - All entities in an entity set share same set of attributes
Keys

- Each entity set has a **key**
 - Set of attributes that uniquely identify an entity
 - Multiple *candidate keys* may exist
 - *Primary key* selected among them
Representation Convention:
- Entity sets: *rectangles*
- Attributes: *ovals*, with key attributes underlined
- Edges connect entity sets to attributes
Relationships and Relationship Sets

- **Relationship**: Association among two (or more) entities
 - “Gabriel works in CS department”
 - Can have descriptive attributes: e.g., “since 9/1/2011”
 - But relationship must be fully determined by entities!
 - *Binary, ternary or multi-way (n-way)* relationships

- **Relationship Set**: Collection of similar relationships
 - Contains *n*-tuples \((e_1, \ldots, e_n)\), where \(e_i\) belongs to entity set \(E_i\)
 - *Instance*: “snapshot” of relationship set at some point in time
Visualizing Relationships and Rel. Sets

- Edge = Relationship
- Set of Edges = Relationship Set

(A, 1)
(B, 1)
(B, 2)
(D, 3)
Relationship Set Representation

Representation Convention:
- Relationship sets: diamonds
- Edges connect relationship sets to entity sets, and relationship sets to relationship set attributes
A Special Case of Relationship

- An entity set can participate in a relationship set with itself
 - Entities in same set play different **roles** in the relationship
 - **Role indicators** express the role

![Diagram of role indicators in a relationship set with itself]
Key Constraints

- How many other entities can an entity have a relationship with?
 - Also referred to as relationship *multiplicity*
Example 1

- **Works_In relationship**: an employee can work in many departments; a dept can have many employees.

 many-to-many
Example 2

- **Manages** relationship: each dept has *at most one* manager

 one-to-many

 from *Employees* to *Departments*, or

 many-to-one

 from *Departments* to *Employees*
Participation Constraints

- **Total vs Partial Participation**
 - **Total**: every department must have a manager
 - “Departments” entity set has total participation in relationship
 - Represented as thickened line (there is a key constraint as well)
 - **Partial**: not every employee is a manager
 - “Employees” entity set has partial participation
Participation Constraints

Partial Participation

Total Participation
Design Choices in the ER Model

- Should a concept be modeled as an entity or an attribute?

- Should a concept be modeled as an entity or a relationship?
 - Considers hierarchies and inheritance
 - Outside the scope of this class
Should *address* be an attribute of Employees or an entity (connected to Employees by a relationship)?
Sometimes **address** may have to be an entity:

- If we have several addresses per employee (since attributes cannot be set-valued)
- If the structure (city, street, etc.) is important, e.g., retrieve employees in a given city (attribute values are atomic!)
Example

Design a database for a bank, including information about customers and their accounts. Information about customers includes their name, address, phone and SSN. Accounts have numbers, types (e.g., savings/checking) and balances.

1. Draw the E/R diagram for this database.
2. Modify the E/R diagram such that each customer must have at least one account.
3. Modify the E/R diagram further such that an account can have at most one customer.