Firewalls

IT443 – Network Security Administration
Slides courtesy of Bo Sheng

Internet Security Mechanisms

- Goal: prevent if possible; detect quickly otherwise; and confine the damage

Prevent:
- Firewall, IPsec, SSL

Detect:
- Intrusion Detection

Survive/Response:
- Recovery, Forensics

Firewalls

- Provides secure connectivity between networks
- Implements and enforces a security policy for communication between networks

Firewalls

- Many organizations have distinct needs
 - access by anyone to public data concerning the company
 - access only by employees to internal data
- Solution: inner and outer (DMZ) networks

Firewall Functions

- Controlled access
 - restrict incoming and outgoing traffic according to security policy
- Others
 - log traffic, for later analysis
 - network address translation
 - encryption / decryption
 - application (payload) transformations

Limitations of Firewalls

- Cannot protect against traffic that does not cross it
 - i.e., there may be other ingress points to the network, such as modems or wireless access points, that bypass the firewall
 - doesn’t protect against “inside” attacks
- Configuration of firewalls to accomplish a desired high-level security policy is non-trivial
Filtering

• Compare traffic to patterns, then process traffic according to rules if matched

• Two styles
 – packet filtering
 – session filtering

Packet Filtering

• Patterns specify values in the header of a single packet, e.g.,
 – source IP address and port number
 – destination IP address and port number
 – transport protocol type

• Decisions made on a per-packet basis
 – no state information (about previous packets) is maintained or used

• Assessment
 – easy to implement
 – but limited capabilities

• May be subject to tiny-fragment attack
 – first fragment has only a few bytes
 – rest of TCP header in a second fragment, not examined by firewall

Session Filtering

• Packet decisions are made in the context of a connection or flow of packets

• If packet is the start of a new connection…
 – check against rules for new connections

• If packet is part of an existing connection…
 – check against state-based rules for existing connections
 – update state of this connection

iptables

• Tables
 – Filter
 • Packet filtering, default table
 – Nat
 • Rewrite packet source/destination
 – Mangle
 • Alter packet header/content
 – Raw
 • Avoid connection track
iptables

• Build-in chains
 – INPUT
 – OUTPUT
 – FORWARD
 – PREROUTING
 – POSTROUTING

iptables

• Basic syntax
 – iptables [-t table] [AD] chain rule-spec [options]

• Rules
 • Match condition
 – E.g., -s 192.168.1.102 --dport 80
 • Target (-j): ACCEPT, DROP/REJECT, QUEUE, or RETURN

 – iptables -L INPUT
 – iptables -A INPUT -p tcp --dport 22 -j ACCEPT

iptables

• Basic syntax
 – Insert: iptables -I INPUT 2

 – Delete:
 • iptables -D INPUT -p tcp --dport 22 -j ACCEPT
 • iptables -D INPUT 2
 • iptables -t filter -F INPUT

iptables

• Examples
 – Network setting:
 • Server (VM): 172.16.190.131
 • Client 1(VM): 172.16.190.132
 • Client 2(Host): 172.16.190.1
 • sudo apt-get install openssh-server telnetd

 – Block ping
 • iptables -A INPUT -p icmp --j DROP

 – Block ping from client 1
 • iptables -A INPUT -s 172.16.190.132 -p icmp --j DROP

 • iptables -A INPUT -s 172.16.190.131

 – Allow at most 1 telnet login from each client
 • iptables -A INPUT -p tcp --syn --dport 23 -m connlimit --connlimit-above 1 -j DROP
 • Limit the rate of ping to at most once per second
 • iptables -A INPUT -p icmp --limit 1/s --limit-burst 2 -j DROP

 • iptables -A INPUT -p icmp --j DROP

• Examples
 – Network setting:
 • Server (VM): 172.16.190.131
 • Client 1(VM): 172.16.190.132
 • Client 2(Host): 172.16.190.1

 – Block all requests from client 2 except ssh
 • iptables -A INPUT -s 172.16.190.132 -j DROP
 • iptables -A INPUT -p tcp -s 172.16.190.132 --dport 22 --j DROP
 • iptables -A INPUT -p tcp --syn --dport 23 -m connlimit --connlimit-above 1 -j DROP
 • iptables -A INPUT -p icmp --limit 1/s --limit-burst 2 -j DROP
 • iptables -A INPUT -p icmp --j DROP

 • iptables -A INPUT -p icmp --j DROP