Dynamic Reconfiguration of Network Applications and Middleware in the Bio-Networking Architecture

Jun Suzuki, Ph.D.
jsuzuki@ics.uci.edu
www.ics.uci.edu/~jsuzuki/
netresearch.ics.uci.edu/bionet/
Dept. of Information and Computer Science
University of California, Irvine

Overview

• Our focus:
 – Dynamic reconfigurability of network systems
 • to adapt to changes in network conditions
 – Adaptation through reconfiguration

• Two approaches
 – Network-aware reconfigurable applications
 • autonomously reconfigure their behaviors to adapt to dynamic network conditions (e.g. network load)
 – Reconfigurable middleware systems
 • reconfigures their internal components to adapt to resource availability (e.g. available memory space, available transport protocols).
Bio-Networking Architecture

- Observation
 - Desirable properties of network applications (e.g. adaptability) have been already realized in various biological systems (e.g. bee colony, bird flock, etc.).

- The Bio-Networking Architecture
 - applies key biological principles and mechanisms for designing network applications.
 - a framework for developing large-scale, highly distributed, heterogeneous, and dynamic network applications.

Biological Concepts Applied

- Decentralized system organization
 - biological entities = cyber-entities (CEs)
 - the smallest component in an application

- Lifecycle
 - Each CE stores and expends energy
 - in exchange for performing service.
 - for using resources.
 - Each CE replicates itself and reproduce a child with a partner.

- Evolution
 - Dynamic reconfiguration of network applications through evolution
Cyber-Entity’s Behavior Policy

Each CE has its own policy for each behavior. A behavior policy consists of factors (F), weights (W), and a threshold.

- If $\sum F_i W_i > \text{threshold}$, then migrate.

Example migration factors:
- **Migration Cost**
 - A higher migration cost (energy consumption) may discourage migration.
- **Distance to Energy Sources**
 - encourages CEs to migrate toward energy sources (e.g., users).
- **Resource Cost**
 - encourages CEs to migrate to a network node whose resource cost is cheaper.
Reconfiguration of Network Applications

• Evolution as a means to reconfigure behaviors of network applications.
 – Biological entities adjust themselves for environmental changes through species diversity and natural selection
 – CEs evolve by
 • generating behavioral diversity among them, and
 – CEs with a variety of behavioral policies are created
 » by human developers manually, or
 » through mutation and crossover (automatically).
 • executing natural selection.
 – death from energy starvation
 – tendency to replicate/reproduce from energy abundance

Mutation and Crossover

• Weight values in each behavior policy change dynamically through mutation.
• Mutation occurs during replication and reproduction.
• Crossover occurs during reproduction.
• A child CE inherits different behaviors from different parents through crossover.
A Simulation Result

- Users (energy sources) move around the network randomly.
- Evolutionary CEs gain more energy than non-evolutionary ones;
- Evolutionary CEs adapt better to dynamic network conditions.
 - by moving closer to users and avoiding network nodes whose resource cost is expensive.
 - by increasing weight values of distance-to-user and resource cost factors.

Status and Issue

- Through simulations, we have already confirmed
 - Effectiveness of energy concept
 - Effectiveness of mutation and crossover
 - Adaptability of CEs through evolutionary reconfiguration mechanisms in dynamic networks

- Issue
 - Acceleration of evolutionary process
 * by reducing energy loss and time delay.
Empirical Implementation of Reconfigurable Network Apps

A **Cyber-entity (CE)** is an autonomous mobile object. CEs communicate with each other using FIPA ACL.

A **CE context** provides references to available bionet services. **Bionet services** are runtime services that CEs use frequently. **Bionet container** dispatches incoming messages to target CEs. **Bionet message transport** takes care of I/O, low-level messaging and concurrency. **Bionet class loader** loads byte code of CEs to Java VM.

Bionet Services

- CEs use bionet services to invoke their behaviors.
 - e.g. bionet lifecycle service when a CE replicates
- Each bionet platform provides 9 bionet services
 - Bionet Lifecycle Service
 - Bionet Relationship Management Service
 - Bionet Energy Management Service
 - Bionet Resource Sensing Service
 - Bionet CE Sensing Service
 - Bionet Pheromone Emission/Sensing Service
 - Bionet Topology Sensing Service
 - Bionet Social Networking Service
 - Bionet Migration Service
Status

• Design phase done. Implementation underway.
 – Has already implemented bionet class loader, bionet message transport, bionet container, and 5 bionet services
 – Now implementing the other 4 bionet services
• Measurements started.
 – Has confirmed bionet platform performs competitively compared with existing ORBs and mobile agent platforms.
• Several design constructs have been reflected to the OMG Super Distributed Objects specification.
• Just started implementing evolution mechanisms that have been used and evaluated in simulation study.
• Will evaluate the characteristics of evolutionary reconfiguration on actual network environment.

Applications

• Content distribution
• Web service
• Peer-to-Peer networks
• Disaster response networks
Reconfiguration of Middleware

• Making not only network applications but also underlying middleware systems to be reconfigurable.

• Approach to reconfigure middleware
 – Compose middleware as a set of components.
 – Middleware
 • sense its context such as available resources and systems current configuration.
 • determine a strategy to reconfigure middleware according to the obtained context.
 • execute the determined reconfiguration strategy.

Status

• In early design stage
 – Investigating middleware reconfiguration mechanisms using the components implemented in bionet platform.

• Designing a metaobject protocol to inspect/modify configuration of middleware components.

• MDA-like approach to reconfigure middleware.

• Biologically-inspired way to reconfigure middleware?
Thank you

- All the papers/documents related to the Bio-Networking Architecture are available at:
- netresearch.ics.uci.edu/bionet/