An Overview of the Bio-Networking Architecture

Jun Suzuki, Ph.D.
jsuzuki@ics.uci.edu
www.ics.uci.edu/~jsuzuki/
netresearch.ics.uci.edu/bionet/
School of Information and Computer Science
University of California, Irvine

Motivation

• Computer network environment is seamlessly spanning locations engaged in human endeavor.
• Need a self-organizing network that supports
 – scalability in terms of # of objects and network nodes,
 – adaptability to changes in network conditions,
 – availability/survivability from massive failures and attacks,
 – simplicity to design and maintain.
• Our solution: apply biological concepts and mechanisms to network application design
 – Biological systems have overcome the above features.
 • e.g. bee colony, bird flock, fish school, etc.
• The Bio-Networking Architecture is a new framework
 – for developing large-scale, highly distributed, heterogeneous, and dynamic network applications.
Biological Concepts Applied

- Decentralized system organization
 - Biological systems
 - consist of autonomous entities (e.g. bees in a bee colony)
 - no centralized (leader) entity (e.g. a leader in a bird flock)
 - Decentralization increases scalability and survivability of biological systems.
 - The Bio-Networking Architecture
 - biological entities = cyber-entities (CEs)
 - the smallest component in an application
 - provides a functional service related to the application
 - autonomous with simple behaviors
 » replication, reproduction, migration, death, etc.
 » makes its own behavioral decision according to its own policy
 - no centralized entity among CEs

- Emergence
 - Biological systems
 - Useful group behavior (e.g. adaptability and survivability) emerges from autonomous local interaction of individuals with simple behaviors.
 - i.e. not by direction of a centralized (leader) entity
 - e.g. food gathering function
 » When a bee colony needs more food, a number of bees will go to the flower patches to gather nectar.
 » When food storage is near its capacity, only a few bees will leave the hive.
 - The Bio-Networking Architecture
 - CEs autonomously
 - sense local/nearby environment
 » e.g. existence of neighboring CEs, existence/movement of users, workload, availability of resources (e.g. memory space), etc.
 - invoke behaviors according to the condition in a local/nearby environment
 - interacts with each other
• Lifecycle
 – Biological systems
 • Each entity strives to seek and consume food for living.
 • Some entities replicate and/or reproduce children with partners.
 – The Bio-Networking Architecture
 • Each CE stores and expends energy for living.
 – gains energy in exchange for providing its service to other CEs
 – expends energy for performing its behaviors, utilizing resources (e.g. CPU and memory), and invoking another CE’s service.
 • Each CE replicates itself and reproduce a child with a partner.

• Evolution
 – Biological system
 • adjusts itself for environmental changes through species diversity and natural selection
 – The Bio-Networking Architecture
 • CEs evolve by
 – generating behavioral diversity among them, and
 » CEs with a variety of behavioral policies are created by human developers manually, or through mutation (during replication and reproduction) and crossover (during reproduction)
 – executing natural selection.
 » death from energy starvation
 » tendency to replicate/reproduce from energy abundance
• Social networking
 – Biological systems (social systems)
 • Any two entities can be linked in a short path through relationships among entities.
 – not through any centralized entity (e.g. directory), rather in a decentralized manner.
 – six degrees of separation
 – The Bio-Networking Architecture
 • CEs are linked with each other using relationships.
 – A relationship contains some properties about other CEs (e.g. unique ID, name, reference, service type, etc.)
 • Relationships are used for a CE to search other CEs.
 – Search queries originate from a CE, and travel from CE to CE through relationships.

CE’s Structure and Behaviors

• Attributes
 – ID
 – Relationship list
 – Author
 – …etc.
• Body
 – Executable code
 – Non-executable data

• Behaviors
 – Energy exchange and storage
 – Migration
 – Replication
 – Reproduction
 – Death
 – Relationship maintenance
 – Social networking (discovery)
 – Resource sensing

Cyber-entities running on a bionet platform
Design Strategies of the Bio-Networking Architecture

• Separate cyber-entity (CE) and Bio-Networking Platform (bionet platform),
 – Cyber-entity (CE)
 • mobile object (agent) that provides any service logic
 – Bionet platform
 • middleware system for deploying and executing cyber-entities

• Implement CE and bionet platform in Java

Current Status of the Bio-Networking Architecture Project

• Our group members have been working on
 – Design and implementation of the bionet platform
 – Distributed (i.e. peer-to-peer) discovery
 • Discovery mechanisms and simulations
 • Generic framework for various discovery mechanisms
 – Adaptation and evolution mechanisms
 • genetic algorithms
 – Simulations
 – Empirical study
 • Artificial immune system
 – Simulations
 – Dynamic composition of cyber-entities
 – Mathematical stability analysis
 – Standardization effort at the Object Management Group
Applications of the Bio-Networking Architecture

• Content distribution
 – Simulations done
 – now empirical deployment underway
• Web service
 – Simulations underway
• Peer-to-peer overlay networks
 – Simulations underway
 – empirical deployment underway
• Disaster response networks
 – Just started

Thank you

• All the papers/documents related to the Bio-Networking Architecture are available at:
 – netresearch.ics.uci.edu/bionet/
 – netresearch.ics.uci.edu/bionet/resources/platform/
• Sponsors
 – NSF (National Science Foundation)
 – DARPA (Defense Advanced Research Program Agency)
 – AFOSR (Air Force Office of Science Research)
 – State of California (MICRO program)
 – Hitachi
 – Hitachi America
 – Novell
 – NTT (Nippon Telegraph and Telephone Corporation)
 – NTT Docomo
 – Fujitsu
 – NS Solutions Corporation