Toward Adaptable Super Distributed Objects (SDOs): Reconfigurability in the Bio-Networking Architecture

Jun Suzuki, Ph.D.
jsuzuki@ics.uci.edu
www.ics.uci.edu/~jsuzuki/
netresearch.ics.uci.edu/bionet/
Dept. of Information and Computer Science
University of California, Irvine

Overview

• Introduction
 – Adaptability
 – Reconfiguration
 – Recap of the Bio-Networking Architecture
• Reconfiguration in the Bio-Networking Architecture
 – Reconfiguration of Network Application
 – Reconfiguration of Middleware
Adaptability

• Our focus
 – Dynamic adaptability to changes in network

• Changes in network
 – Resource availability
 • CPU cycle, memory space, disk space, network bandwidth (Ethernet, ATM, wireless, etc.)
 – Runtime application characteristics
 • Workload, user's access pattern, error pattern

Reconfigurability

• Our approach: adaptation through reconfiguration
 – Monitoring operating/network environment
 • to detect when adaptation should take place
 – Reconfiguring to adapt to changes in the environment

• Two directions
 – Network-aware reconfigurable applications
 • autonomously reconfigure their behaviors to adapt to dynamic network conditions (e.g. network load)
 – Reconfigurable middleware system
 • reconfigures their internal components to adapt to resource availability (e.g. available memory space, available transport protocols).
Bio-Networking Architecture

• Observation
 – Desirable properties of network applications (e.g. adaptability) have already been realized in various biological systems (e.g. bee colony, bird flock, etc.).

• The Bio-Networking Architecture
 – applies key biological principles and mechanisms for designing network applications.
 – a framework for developing large-scale, highly distributed, heterogeneous, and dynamic network applications.

Biological Concepts Applied

• Decentralized system organization
 – biological entities = cyber-entities (CEs)
 • the smallest component in an application

• Lifecycle
 – Each CE stores and expends energy
 • in exchange for performing service.
 • for using resources.
 – Each CE replicates itself and reproduce a child with a partner.

• Evolution
 – Dynamic reconfiguration of network applications through evolution
Structure of Network Apps

- **Attributes**
 - ID
 - Relationship list
 - Age
 - … etc.

- **Behaviors**
 - Communication
 - Migration
 - Replication and reproduction
 - Death
 - Resource sensing
 - State change
 - Energy exchange and storage
 - Relationship establishment
 - Social networking (discovery)

- **Body**
 - Executable code
 - Non-executable data

Cyber-Entity’s Behavior Policy

Each CE has its own policy for each behavior. A behavior policy consists of factors (F), weights (W), and a threshold.

- If \(\sum F_i W_i > \text{threshold} \), then migrate.

Example migration factors:

- **Migration Cost**
 - A higher migration cost (energy consumption) may discourage migration.

- **Distance to Energy Sources**
 - encourages CEs to migrate toward energy sources (e.g., users).

- **Resource Cost**
 - encourages CEs to migrate to a network node whose resource cost is cheaper.
Reconfiguration of Network Applications

• Evolution as a means to reconfigure behaviors of network applications.
 – Biological entities adjust themselves for environmental changes through species diversity and natural selection.
 – CEs evolve by
 • generating behavioral diversity among them, and
 – CEs with a variety of behavioral policies are created
 » by human developers manually, or
 » through mutation and crossover (automatically).
 • executing natural selection.
 – death from energy starvation
 – tendency to replicate/reproduce from energy abundance

Mutation and Crossover

• Weight values in each behavior policy change dynamically through mutation.
• Mutation occurs during replication and reproduction.

• Crossover occurs during reproduction.
• A child CE inherits different behaviors from different parents through crossover.
A Simulation Result

- Users (energy sources) move around network randomly.
- Evolutionary CEs gain more energy than non-evolutionary ones;
- Evolutionary CEs adapt better to dynamic network conditions.
 - by moving closer to users and avoiding network nodes whose resource cost is expensive.
 - by increasing weight values of distance-to-user and resource cost factors.

Status and Issues

- Through simulations, we have already confirmed
 - Effectiveness of energy concept
 - Effectiveness of mutation and crossover
 - Adaptability of CEs through evolutionary reconfiguration mechanisms in dynamic networks

- Issue
 - Acceleration of evolutionary process
 • by reducing energy loss and time delay.
A *Cyber-entity (CE)* is an autonomous mobile object. CEs communicate with each other using FIPA ACL. A CE context provides references to available bionet services. Bionet services are runtime services that CEs use frequently. Bionet container dispatches incoming messages to target CEs. Bionet message transport takes care of I/O, low-level messaging and concurrency. Bionet class loader loads byte code of CEs to Java VM.

Bionet Services

- CEs use bionet services to invoke their behaviors.
 - e.g. bionet lifecycle service when a CE replicates
- Each bionet platform provides 9 bionet services
 - Bionet Lifecycle Service
 - Bionet Relationship Management Service
 - Bionet Energy Management Service
 - Bionet Resource Sensing Service
 - Bionet CE Sensing Service
 - Bionet Pheromone Emission/Sensing Service
 - Bionet Topology Sensing Service
 - Bionet Social Networking Service
 - Bionet Migration Service
Status

• Implementation done.
 – Now in the process to document platform functionalities and improve the performance of the functionalities
 – netresearch.ics.uci.edu/bionet/resources/platform/

• Measurement work started.
 – Has confirmed bionet platform performs competitively compared with existing middleware systems and mobile agent platforms.

• The design of CEs and several other constructs is based on a preliminary version of the OMG Super Distributed Objects specification.
 – The model that SDO DSIG discussed at the DC meeting.

• Implementing evolution mechanisms that have been used and evaluated in simulation study.
 – Replication, reproduction, mutation crossover, etc.

• Will evaluate the characteristics of evolutionary reconfiguration on actual network environment.
Applications

- Content distribution
- Web service
- Peer-to-Peer networks
- Disaster response networks

Reconfiguration of Middleware

- Making not only network applications but also underlying middleware systems to be reconfigurable.

- Approach to reconfigure middleware
 - Compose middleware as a set of components.
 - Middleware
 - sense its context such as available resources and systems current configuration.
 - determine a strategy to reconfigure middleware according to the obtained context.
 - execute the determined reconfiguration strategy.
Preliminary Design Strategy

- Insert a reconfiguration layer into the bionet platform
 - Manages and controls middleware components
- Model bionet services and/or major functionalities in a bionet service as middleware components
- Manage middleware components with the Component Configurator Framework (design pattern)
Status

- In early design stage
 - Investigating middleware reconfiguration mechanisms using the components implemented in bionet platform.
- Designing a metaobject protocol to inspect/modify configuration of middleware components.
- MDA-like approach to reconfigure middleware?
- Biologically-inspired way to reconfigure middleware?

Thank you

- All the papers/documents related to the Bio-Networking Architecture are available at:
 - netresearch.ics.uci.edu/bionet/
 - netresearch.ics.uci.edu/bionet/resources/platform/
- Sponsors
 - NSF (National Science Foundation)
 - DARPA (Defense Advanced Research Program Agency)
 - AFOSR (Air Force Office of Science Research)
 - State of California (MICRO program)
 - Hitachi
 - Hitachi America
 - Novell
 - NTT (Nippon Telegraph and Telephone Corporation)
 - NTT Docomo
 - Fujitsu
 - NS Solutions Corporation