Relations

If we want to describe a relationship between elements of two sets A and B, we can use **ordered pairs** with their first element taken from A and their second element taken from B.

Since this is a relation between **two sets**, it is called a **binary relation**.

Definition: Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

In other words, for a binary relation R we have $R \subseteq A \times B$. We use the notation aRb to denote that $(a, b) \in R$ and $a \not R b$ to denote that $(a, b) \not\in R$.

Relations

When (a, b) belongs to R, a is said to be related to b by R.

Example: Let P be a set of people, C be a set of cars, and D be the relation describing which person drives which car(s).

$P = \{\text{Carl, Suzanne, Peter, Carla}\}$,

$C = \{\text{Mercedes, BMW, tricycle}\}$

$D = \{(\text{Carl, Mercedes}), (\text{Suzanne, Mercedes}), (\text{Suzanne, BMW}), (\text{Peter, tricycle})\}$

This means that Carl drives a Mercedes, Suzanne drives a Mercedes and a BMW, Peter drives a tricycle, and Carla does not drive any of these vehicles.

Functions as Relations

You might remember that a function f from a set A to a set B assigns a unique element of B to each element of A.

The graph of f is the set of ordered pairs (a, b) such that $b = f(a)$.

Since the graph of f is a subset of $A \times B$, it is a relation from A to B.

Moreover, for each element a of A, there is exactly one ordered pair in the graph that has a as its first element.

Relations on a Set

Definition: A relation on the set A is a relation from A to A.

In other words, a relation on the set A is a subset of $A \times A$.

Example: Let $A = \{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a < b\}$?
Relations on a Set

Solution: \(R = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\} \)

Properties of Relations

We will now look at some useful ways to classify relations.

Definition: A relation \(R \) on a set \(A \) is called reflexive if \((a, a) \in R\) for every element \(a \in A \).

Are the following relations on \(\{1, 2, 3, 4\} \) reflexive?

- \(R = \{(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)\} \) Yes.
- \(R = \{(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)\} \) No.

Definition: A relation \(R \) on a set \(A \) is called irreflexive if \((a, a) \not\in R\) for every element \(a \in A \).

Properties of Relations

Definitions:

A relation \(R \) on a set \(A \) is called symmetric if \((b, a) \in R \) whenever \((a, b) \in R\) for all \(a, b \in A \).

A relation \(R \) on a set \(A \) is called antisymmetric if \(a = b \) whenever \((a, b) \in R \) and \((b, a) \in R\).

A relation \(R \) on a set \(A \) is called asymmetric if \((a, b) \in R\) implies that \((b, a) \not\in R\) for all \(a, b \in A \).

Counting Relations

Example: How many different reflexive relations can be defined on a set \(A \) containing \(n \) elements?

Solution: Relations on \(R \) are subsets of \(A \times A \), which contains \(n^2 \) elements.

Therefore, different relations on \(A \) can be generated by choosing different subsets out of these \(n^2 \) elements, so there are \(2^{n^2} \) relations.

A reflexive relation, however, must contain the \(n \) elements \((a, a)\) for every \(a \in A \).

Consequently, we can only choose among \(n^2 - n = n(n-1) \) elements to generate reflexive relations, so there are \(2^{n(n-1)} \) of them.
Combining Relations

Relations are sets, and therefore, we can apply the usual set operations to them.

If we have two relations R_1 and R_2, and both of them are from a set A to a set B, then we can combine them to $R_1 \cup R_2$, $R_1 \cap R_2$, or $R_1 - R_2$.

In each case, the result will be another relation from A to B.

Combining Relations

... and there is another important way to combine relations.

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

In other words, if relation R contains a pair (a, b) and relation S contains a pair (b, c), then $S \circ R$ contains a pair (a, c).

Combining Relations

Example: Let D and S be relations on $A = \{1, 2, 3, 4\}$.

$D = \{(a, b) \mid b = 5 - a\}$ "b equals (5 – a)"

$S = \{(a, b) \mid a < b\}$ "a is smaller than b"

$D = \{(1, 4), (2, 3), (3, 2), (4, 1)\}

$S = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}

$S \circ D = \{(2, 4), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)\}

D maps an element a to the element $(5 – a)$, and afterwards S maps $(5 – a)$ to all elements larger than $(5 – a)$, resulting in $S \circ D = \{(a, b) \mid b > 5 – a\}$ or $S \circ D = \{(a, b) \mid a + b > 5\}$.