Question 1: A Variation of the Language L

Let us consider a new language L'. This language is identical to L, except that instead of the instruction types

\begin{align*}
V &\leftarrow V \\
V &\leftarrow V + 1 \\
V &\leftarrow V - 1 \\
\text{IF } V \neq 0 \text{ GOTO } L
\end{align*}

we now have the instruction types

\begin{align*}
V &\leftarrow V \\
V &\leftarrow V + 2 \\
V &\leftarrow V - 1 \\
\text{IF } V = 0 \text{ GOTO } L
\end{align*}

(a) Show that the language L' is at least as powerful as L, that is, can compute all functions that L can compute. \textbf{Hint:} You need to show for each instruction type in L how it can be simulated in L', i.e., how we could translate it into L' code that has the same effect.

(b) Write down the entire L' code for the new universal programs U'_n that can execute the code of any L' program. Of course you can use macros, and you can reuse most of the code that we wrote for programming U_n (see slides and textbook).
Question 2: Some Set Operations

Let A and B be sets. Prove or disprove:

(a) For all sets A and B, if A and B are both r.e., then \(A \cup B \) is also r.e.

(b) For all sets A and B, if A and B are both recursive, then \(A \cup B \) is also recursive.

(c) If \(A \subset B \) and B is r.e., then A is r.e.

(d) If \(A \cup B \) is recursive, then both A and B are recursive.

(e) If A is recursive, then \(\neg A \) is also recursive.

Question 3: What About These Sets?

For each of the following sets, determine whether it is recursive, r.e., or neither. Prove your answer. Of course, if you prove that a set is recursive, it is clear that it is also r.e., and you do not have to prove that.

(a) \(A = \{ x \in \mathbb{N} \mid x \text{ mod } 7 = 2 \} \)

(b) \(B = \{ x \in \mathbb{N} \mid x \text{ is the number of a program that computes the function } f(n) = 2n \} \)

(c) \(C = \{ x \in \mathbb{N} \mid x \text{ is the number of a program that terminates on input } 12 \text{ after at most 50 steps} \} \)

(d) \(D = \{ x \in \mathbb{N} \mid x \text{ is the number of a program whose output is defined for at least one input} \} \)