Name:__________________

CS 620 – Theory of Computation – Spring 2019
Instructor: Marc Pomplun

Midterm Practice Exam

Duration: 1 hour and 15 minutes

You only need your writing utensils to complete this exam. No calculators, no books, and no notes allowed.

Question 1: _____ out of _____ points
Question 2: _____ out of _____ points
Question 3: _____ out of _____ points
Question 4: _____ out of _____ points

Total Score:

Grade:
Question 1: True or False?
Are the following statements true or false? Check the appropriate box for each statement. Give it your best guess if you are not sure which answer is correct.

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Every partially computable function is also computable.</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>b) There are infinitely many programs in the language L that compute the function $f(x) = 2x$.</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>c) The class of primitive recursive functions is a subset of every PRC class.</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>d) There is exactly one program P in the language L that has the number $#(P) = 347,554$.</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>e) $[3, 2, 1] = 360$</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>f) If function $g(x)$ is partially computable and function $h(x)$ is computable, then function $f(x) = g(h(x))$ is partially computable.</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>g) Every function in a PRC class can be derived from the initial functions by applying composition and primitive recursion a finite number of times.</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>h) $<3, <2, 1>> = 112$</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>i) The snapshot of a computation in the language L is given by the values of all its variables and the number of the next instruction to be executed.</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>j) The function $f(x, y) = x – y$ is computable in the language L.</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>
Question 2: Expansive Code

Please take a look at the following program called MYSTERY:

[A] \begin{align*}
&\text{IF } X\neq 0 \text{ GOTO B} \\
&\quad Y \leftarrow Y+1 \\
&\quad \text{IF } Y\neq 0 \text{ GOTO E}
\end{align*}

[B] \begin{align*}
&\quad X \leftarrow X-1 \\
&\quad \text{IF } X\neq 0 \text{ GOTO C} \\
&\quad Z \leftarrow Z+1 \\
&\quad \text{IF } Z\neq 0 \text{ GOTO E}
\end{align*}

[C] \begin{align*}
&\quad X \leftarrow X-1 \\
&\quad Z \leftarrow Z+1 \\
&\quad \text{IF } Z\neq 0 \text{ GOTO A}
\end{align*}

(a) What function does this code compute? You can describe it in English words instead of equations if you like.

(b) You now employ a macro MYSTERY(x) to use this program in another, embedding one named ENIGMA(x):

[A3] \begin{align*}
&\quad X \leftarrow X + 1 \\
&\quad Y \leftarrow \text{MYFUNC}(X)
\end{align*}

Expand the macro MYFUNC(X) and show the resulting, expanded version of ENIGMA(x) that now only contains actual \(L \) instructions and the simple macros used in our expansion scheme such as \(V \leftarrow V' \). You get full points if your program is correct and bonus points if you perform the expansion exactly as described in the textbook.
Question 3: A New Type of Prime Number

Dealing with the same old prime numbers has become boring. Let us define a new type of prime number, which we will call square prime. A square prime is a natural number n greater than 1 that is a perfect square and has no other divisors than 1, n, and the square root of n.

For example, the smallest square prime is 4, because 4 is a perfect square \((2 \cdot 2 = 4)\) and its only divisors are 1, 2, and 4. The number 9 is the next square prime, because we have \(3 \cdot 3 = 9\), and its only divisors are 1, 3, and 9. However, the next perfect square, 16, is not a square prime: Besides the divisors 1, 4, and 16, it is also divisible by 2 and 8. The following one, 25, is a square prime, being only divided by 1, 5, and 25. And so on…

The predicate \(\text{SquarePrime}(x)\) is TRUE, if x is a square prime, and FALSE otherwise. Show that \(\text{SquarePrime}(x)\) is a primitive recursive predicate. In your proof, you can refer to all functions and predicates that we have already shown in class to be primitive recursive.
Question 4 (Bonus Question): About Programs and Instructions

a) In our enumeration scheme for programs in the language L, each instruction is completely described by the variables a, b, and c. The variable c is defined as

\[c = #(V) - 1. \]

Explain why the subtraction of 1 is necessary to make our enumeration scheme work.

b) Write down the instruction I for which #(I) = 93. Explain every step of your calculation.