Sample Questions

Question 1:
Write a program \(P \) that computes \(\Psi_P(1)(r) = r - 2 \) using no macros.

Notice that we only consider natural numbers! This means that, for example, the expression \((1-2)\) is undefined. Any program computing such an expression must never halt.

Sample solution:

\[
\begin{align*}
X & \leftarrow X - 1 \\
\text{IF } X \neq 0 \text{ GOTO A2} \\
\end{align*}
\]

\[
\begin{align*}
A1 & \quad Z \leftarrow Z + 1 \\
\text{IF } Z \neq 0 \text{ GOTO A1} \\
\end{align*}
\]

\[
\begin{align*}
A2 & \quad X \leftarrow X - 1 \\
\quad Y \leftarrow Y + 1 \\
\text{IF } X \neq 0 \text{ GOTO A2} \\
\quad Y \leftarrow Y - 1
\end{align*}
\]

Sample Questions

Question 2:

a) Write a program \(S \) that computes \(\Psi_S(1)(r) = r - 4 \).

Use a macro based on program \(P \) of the form \(W \leftarrow p(V) \) (which has the effect \(W \leftarrow V - 2 \)).

Sample solution:

\[
\begin{align*}
Y & \leftarrow p(X) \\
Y & \leftarrow p(Y)
\end{align*}
\]

b) Now comes the best part: Expand all macros in \(S \) using the method we discussed in the lecture.

\[
\begin{align*}
Z_2 & \leftarrow 0 \quad \text{(expansion of } Y \leftarrow p(X) \text{ with } n = 2) \\
Z_1 & \leftarrow X \\
Z_0 & \leftarrow 0 \\
Z_{-1} & \leftarrow Z_1 \\
\text{IF } Z_0 = 0 \text{ GOTO A1} \\
Z_1 & \leftarrow Z_1 - 1 \\
\text{IF } Z_1 \neq 0 \text{ GOTO A1} \\
Z_0 & \leftarrow Z_0 - 1 \\
Y & \leftarrow Z_0 - 1 \\
\end{align*}
\]

Composition

Let us **combine** computable functions in such a way that the output of one becomes an input to another. For example, we could combine the functions \(f \) and \(g \) to obtain a new function \(h \): \(h(x) = f(g(x)) \).

Let us now take a more general view:

Definition: Let \(f \) be a function of \(k \) variables and let \(g_1, \ldots, g_k \) be functions of \(n \) variables. Let \(h(x_1, \ldots, x_k) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n)) \).

Then \(h \) is said to be obtained from \(f \) and \(g_1, \ldots, g_k \) by composition.

Theorem 1.1: If \(h \) is obtained from the (partially) computable functions \(f, g_1, \ldots, g_k \) by composition, then \(h \) is (partially) computable.

Proof: The following program obviously computes \(h \):

\[
\begin{align*}
Z_1 & \leftarrow g_1(X_1, \ldots, X_n) \\
\vdots \\
Z_k & \leftarrow g_k(X_1, \ldots, X_n) \\
Y & \leftarrow f(Z_1, \ldots, Z_k)
\end{align*}
\]

If \(f, g_1, \ldots, g_k \) are not only partially computable but are also total, then so is \(h \).
Composition
Let us combine computable functions in such a way that the output of one becomes an input to another. For example, we could combine the functions f and g to obtain a new function h:

$$h(x) = f(g(x))$$

Let us now take a more general view:

Definition: Let f be a function of k variables and let g_1, \ldots, g_k be functions of n variables. Let

$$h(x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n)).$$

Then h is said to be obtained from f and g_1, \ldots, g_k by composition.

Theorem 1.1: If h is obtained from the (partially) computable functions f, g_1, \ldots, g_k by composition, then h is (partially) computable.

Proof: The following program obviously computes h:

$$Z_1 \leftarrow g_1(X_1, \ldots, X_n)$$
$$\vdots$$
$$Z_k \leftarrow g_k(X_1, \ldots, X_n)$$
$$Y \leftarrow f(Z_1, \ldots, Z_k)$$

If f, g_1, \ldots, g_k are not only partially computable but are also total, then so is h. ■