Recursively Enumerable Sets

Thus, saying that a set \(B \) is computable or recursive is the same as saying that \(P(x_1, \ldots, x_n) \) is a computable function.

Likewise, \(B \) is a primitive recursive set if \(P(x_1, \ldots, x_n) \) is a primitive recursive predicate.

It follows that:

Theorem 4.1: Let the sets \(B, C \) belong to some PRC class \(\mathcal{C} \). Then so do the sets \(B \cup C, B \cap C, \neg B \).

Proof: This is an immediate consequence of Theorem 5.1, Chapter 3.

Recursively Enumerable Sets

As long as the Gödel numbering functions \([x_1, \ldots, x_m]\) and \((x)_i\) are available, we only need to consider subsets of \(\mathbb{N} \) instead of subsets of \(\mathbb{N}^m \).

Then we have:

Theorem 4.2: Let \(\mathcal{C} \) be a PRC class, and let \(B \) be a subset of \(\mathbb{N}^m, m \geq 1 \). Then \(B \) belongs to \(\mathcal{C} \) if and only if \(B' = \{ [x_1, \ldots, x_m] \in \mathbb{N} | (x_1, \ldots, x_m) \in B \} \) belongs to \(\mathcal{C} \).

Recursively Enumerable Sets

Definition: The set \(B \subseteq \mathbb{N} \) is called *recursively enumerable* if there is a partially computable function \(g(x) \) such that \(B = \{ x \in \mathbb{N} | g(x) \downarrow \} \).

The term recursively enumerable is abbreviated \(r.e. \).

A set is \(r.e. \) just when it is the domain of a partially computable function.

If \(\varphi \) is a program that computes the function \(g \) (see above), then \(B \) is simply the set of all inputs to \(\varphi \) for which \(\varphi \) eventually halts.

Recursively Enumerable Sets

Example: Let us consider the case \(B \cup C \).

There must be predicates \(P_B \) and \(P_C \) such that:

\[
B = \{ x \in \mathbb{N} | P_B(x) \} \\
C = \{ x \in \mathbb{N} | P_C(x) \}
\]

Then:

\[
B \cup C = \{ x \in \mathbb{N} | P_B(x) \lor P_C(x) \}
\]

Since \(\lor \) is a primitive-recursive function, the predicate \(P_B(x) \lor P_C(x) \) is also in class \(\mathcal{C} \). Then the equation above shows that \(B \cup C \) is in \(\mathcal{C} \) as well.

Recursively Enumerable Sets

Proof: If \(P_B(x_1, \ldots, x_m) \) is the characteristic function of \(B \), then

\[
P_B(x) \iff P_B(x_1, \ldots, x_m) \land Lk(x) \leq m \land x > 0
\]

is the characteristic function of \(B' \), and \(P_B \) clearly belongs to \(\mathcal{C} \) if \(P_B \) belongs to \(\mathcal{C} \).

On the other hand, if \(P_B(x) \) is the characteristic function of \(B' \), then

\[
P_B(x_1, \ldots, x_m) \iff P_B([x_1, \ldots, x_m])
\]

is the characteristic function of \(B \), and \(P_B \) clearly belongs to \(\mathcal{C} \) if \(P_B \) belongs to \(\mathcal{C} \).

For example, \(\{ [x, y] \in \mathbb{N} | HALT(x, y) \} \) is not a computable set.

Recursively Enumerable Sets

If we think of \(\varphi \) as providing an algorithm for testing for membership in \(B \), we see that

- if a number belongs to \(B \), the algorithm will provide a positive answer,
- if a number does not belong to \(B \), the algorithm will never terminate.

Such algorithms are called *semi-decision procedures*.

They can be considered an “approximation” to solving the problem of testing membership in \(B \).
Recursively Enumerable Sets

Theorem 4.3: If B is a recursive set, then B is r.e.

Proof: Consider the following program $P:

[A] IF $ \neg (X \in B)$ GOTO A

Since B is recursive, the predicate $X \in B$ is computable and P can be expanded to a program of L.

Let P compute the function $h(x)$. Then, clearly, $B = \{x \in N | h(x) \downarrow \}$.

Recursively Enumerable Sets

Theorem 4.4: The set B is recursive if and only if B and $\neg B$ are both r.e.

Proof: If B is recursive, then by Theorem 4.1 so is $\neg B$, and hence by Theorem 4.3, they are both r.e. Conversely, if B and $\neg B$ are both r.e., we may write

$B = \{x \in N | g(x) \downarrow \}

\neg B = \{x \in N | h(x) \downarrow \}$,

where g and h are both partially computable.

Recursively Enumerable Sets

Definition: We write:

$W_n = \{x \in N | \Phi(x, n) \downarrow \}$.

Theorem 4.6 (Enumeration Theorem): A set B is r.e. if and only if there is an n for which $B = W_n$.

This is an immediate consequence of the definition of $\Phi(x, n)$.

The theorem gets its name from the fact that the sequence W_0, W_1, W_2, \ldots is an enumeration of all r.e. sets.

Recursively Enumerable Sets

We further define:

$K = \{n \in N | n \in W_n\}$.

Then

$n \in W_n \iff \Phi(n, n) \downarrow \iff \text{HALT}(n, n)$.

K is the set of all numbers n such that program number n eventually halts on input n.

Theorem 4.7:

K is r.e. but not recursive.
Recursively Enumerable Sets

Proof:
Since $K = \{n \in \mathbb{N} \mid \Phi(n, n) \downarrow\}$, and by the universality theorem (Theorem 3.1), $\Phi(n, n)$ is partially computable, K is obviously r.e.
If K were recursive, then $\text{¬}K$ would be r.e.
If that were the case, then by the enumeration theorem there would have to be some number i so that $\text{¬}K = W_i$.
But then:
\[i \in K \iff i \notin K \iff i \in W_i \iff i \in \text{¬}K. \]
Contradiction!

Or:
\[i \in K \iff i \notin K \iff i \in W_i \iff i \in \text{¬}K. \]
Contradiction!

There are alternative ways of describing r.e. sets:

Theorem 4.8:
Let B be an r.e. set. Then there is a primitive recursive predicate $R(x, t)$ such that $B = \{x \in \mathbb{N} \mid \exists t \ R(x, t)\}$.

Proof:
Let $B = W_n$. Then
\[B = \{x \in \mathbb{N} \mid \exists t \ \text{STP}(x, n, t)\}, \]
and $\text{STP}(1)$ is primitive recursive by Theorem 3.2.

Theorem 4.9:
Let S be a nonempty r.e. set. Then there is a primitive recursive function $f(u)$ such that $S = \{f(n) \mid n \in \mathbb{N}\} = \{f(0), f(1), f(2), \ldots\}$. In other words, S is the range of f.

Theorem 4.10:
Let $f(x)$ be a partially computable function, and let $S = \{f(x) \mid f(x) \downarrow\}$ (so S is the range of f). Then S is r.e.

If we combine Theorems 4.9 and 4.10, we get:

Theorem 4.11:
Consider a set $S \neq \emptyset$. The following statements are all equivalent:
1. S is r.e.;
2. S is the range of a primitive recursive function;
3. S is the range of a recursive function;
4. S is the range of a partial recursive function.

This theorem motivates the term **recursively enumerable**.
A nonempty r.e. set is enumerated by a recursive function.