Proof Practice

Prove or disprove:
The empty set \emptyset is recursive.

Proof that it is recursive:
In order to prove that a set B is recursive, we have to show that there is a computable predicate P_B such that:

$B = \{ x \in \mathbb{N} \mid P_B(x) \}$

For the empty set, P_\emptyset has to be false for every x.

P_\emptyset is computable, because it is computed, for instance, by the empty program.

Proof Practice

Prove or disprove:
The set of all natural numbers \mathbb{N} is recursive.

Proof that it is recursive:
In order to prove that a set B is recursive, we have to show that there is a computable predicate P_B such that:

$B = \{ x \in \mathbb{N} \mid P_B(x) \}$

For the set \mathbb{N}, $P_\mathbb{N}$ has to be true for every x.

$P_\mathbb{N}$ is computable, because it is computed, for instance, by the following program:

$Y \leftarrow Y + 1$

Proof Practice

Prove or disprove:
If A and B are recursive sets, then $A \cap B$ is also a recursive set.

Proof that $A \cap B$ is a recursive set:
If A and B are recursive, then there must be computable predicates P_A and P_B such that:

$A = \{ x \in \mathbb{N} \mid P_A(x) \}$

$B = \{ x \in \mathbb{N} \mid P_B(x) \}$

Then we need to show that there is a computable predicate $P_{A \cap B}$ such that:

$A \cap B = \{ x \in \mathbb{N} \mid P_{A \cap B}(x) \}$

The following program computes $P_{A \cap B}$:

IF $\neg P_A(X)$ GOTO E
IF $\neg P_B(X)$ GOTO E
$Y \leftarrow Y + 1$

Or this one:

$Y \leftarrow P_A(X) \cdot P_B(X)$

Proof Practice

Prove or disprove:
The set B of all natural numbers whose associated programs halt on inputs 4 and 7 is r.e.

Proof that it is r.e.:
In order to prove that B is r.e., we have to show that there is a partially computable function $f_B(x)$ such that:

$B = \{ x \in \mathbb{N} \mid f_B(x) \downarrow \}$

The following program computes $f_B(x)$:

$Z \leftarrow U_4(4, X)$
$Z \leftarrow U_7(7, X)$

Proof Practice

Prove or disprove:
The set B of all natural numbers whose associated programs do not halt on input 5 is r.e.

Proof that it is not r.e.:
Assume that B is r.e. This would require that we can compute for a given program whether it halts on a given input (here: input 5).

In that case, the predicate $\text{HALT}(x, y)$ would be computable. However, we already proved that $\text{HALT}(x, y)$ is not computable.

This contradiction shows that B cannot be r.e.
Theorem 5.1 (Parameter Theorem):
For each \(n, m > 0 \) there is a primitive recursive function \(S_m^n(u_1, \ldots, u_n, y) \) such that
\[
\Phi_{m+n}(x_1, \ldots, x_m, u_1, \ldots, u_n, y) = \Phi_m(x_1, \ldots, x_m, S_m^n(u_1, \ldots, u_n, y)).
\]
Suppose that the values for \(u_1, \ldots, u_n, \) and \(y \) are fixed.
Then the left side of the equation is a partially computable function of the \(m \) arguments \(x_1, \ldots, x_m \).
Let the number of the program that computes this function be \(q \). Then we have:
\[
\Phi_{m+n}(x_1, \ldots, x_m, u_1, \ldots, u_n, y) = \Phi_m(x_1, \ldots, x_m, q).
\]
The parameter theorem tells us that there exists such a \(q \) that can be obtained from \(u_1, \ldots, u_n, \) and \(y \) by a primitive recursive function.

Let us take a look at the case \(n = 1 \):
\[
\Phi_{m+1}(x_1, \ldots, x_m, u, y) = \Phi_m(x_1, \ldots, x_m, S_m(u, y)).
\]
Here, \(S_m(u, y) \) is the number of a program that receives inputs \(x_1, \ldots, x_m \) and computes the same value as program number \(y \) does on inputs \(x_1, \ldots, x_m, u \).
We can easily obtain \(S_m(u, y) \) by writing the instruction \(X_m+1 \leftarrow u \) and then appending the program with number \(y \).
This works similarly for any given \(n \), which can be proven by mathematical induction (see page 86 in the textbook).

Theorem 6.1 (Recursion Theorem):
Let \(g(z, x_1, \ldots, x_m) \) be a partially computable function of \((m + 1)\) variables. Then there is a number \(e \) such that
\[
\Phi_e(x_1, \ldots, x_m) = g(e, x_1, \ldots, x_m).
\]
Proof: Consider the partially computable function \(g(S_m(v, v), x_1, \ldots, x_m) \) where \(S_m^1 \) is the function that occurs in the parameter theorem.
Clearly, there must be a program that takes inputs \(x_1, \ldots, x_m \) and \(v \) and computes function \(g \). Let the number of such a program be \(z_0 \). Then we have:
\[
g(S_m^1(v, v), x_1, \ldots, x_m) = \Phi^{m+1}(x_1, \ldots, x_m, v, z_0)
\]
Applying the Parameter Theorem:
\[
g(S_m^1(v, v), x_1, \ldots, x_m) = \Phi^{m+1}(x_1, \ldots, x_m, S_m^1(v, z_0))
\]
Setting \(v = z_0 \):
\[
g(S_m^1(z_0, z_0), x_1, \ldots, x_m) = \Phi^{m+1}(x_1, \ldots, x_m, S_m^1(z_0, z_0))
\]
Setting \(e = S_m^1(z_0, z_0) \):
\[
g(e, x_1, \ldots, x_m) = \Phi^{m+1}(x_1, \ldots, x_m, e) = \Phi^{m+1}(x_1, \ldots, x_m)
\]
End of proof.

Corollary 6.2:
There is a number \(e \) such that for all \(x \):
\[
\Phi_e(x) = x.
\]
Proof: Consider the computable projection function \(g(z, x) = u_1^2(z, x) = z \).
With the help of the Recursion Theorem, we can find a number \(e \) such that
\[
\Phi_e(x) = g(e, x) = e.
\]
Such programs generate copies of themselves.
Rice’s Theorem

Let Γ be some collection of partially computable functions of one variable. We associate with Γ the following index set R_Γ:

$$R_\Gamma = \{ t \in \mathbb{N} \mid \Phi_t \in \Gamma \}.$$

R_Γ will be a recursive set if there is an algorithm which accepts as input the number t of a program and returns the value TRUE or FALSE depending on whether or not the function computed by this program belongs to Γ.

Rice’s Theorem

Some examples are:

1. Γ is the set of computable functions;
2. Γ is the set of primitive recursive functions;
3. Γ is the set of partially computable functions which are defined for all but a finite number of values of x.

Theorem 7.1 (Rice’s Theorem): Let Γ be a collection of partially computable functions of one variable. Let there be partially computable functions $f(x)$ and $g(x)$ such that $f(x)$ belongs to Γ but $g(x)$ does not. Then R_Γ is not recursive.

Rice’s Theorem

Rice’s Theorem tells us that there is no way to algorithmically determine non-trivial properties of the function computed by another program. Trivial properties are those that apply to all partially computable functions or none of them. The theorem uses functions $f(x)$ and $g(x)$ - such that $f(x)$ belongs to a collection Γ but $g(x)$ does not - for the sole purpose of excluding such trivial cases.