Post-Turing Programs

Example 3: We want to compute a function \(f(x_1, x_2, x_3) \), where \(A = \{s_1, s_2\} \), \(x_1 = 0 \), \(x_2 = s_2s_1s_2 \), and \(x_3 = 0 \). Then the initial tape configuration is as follows:

\[
\begin{array}{cccccc}
B & B & s_2 & s_1 & s_2 & B \\
\uparrow
\end{array}
\]

Notice that it is impossible to distinguish this initial tape configuration from that with two inputs \(x_1 = 0 \) and \(x_2 = s_2s_1s_2 \). Therefore, the number of arguments must be provided externally.

Now let us look at the execution of a very simple \(T \) program. The arrow in the program indicates the next instruction to be executed.

1. PRINT \(s_1 \) LEFT
2. PRINT \(s_2 \) LEFT
3. \(s_1 \) \(x \) \(\uparrow \)

program terminated
Post-Turing Programs
What function did the previous program compute?

Definition: Let \(f(x_1, \ldots, x_m) \) be an \(m \)-ary partial function on the alphabet \(A = \{s_1, \ldots, s_n\} \). Then the program \(\mathcal{P} \) in the Post-Turing language \(\mathcal{T} \) is said to **compute** \(f \) if when started in the tape configuration
\[
B \ x_1 \ B \ x_2 \ B \ x_3 \ldots B \ x_m
\]
it eventually halts if and only if \(f(x_1, \ldots, x_m) \) is defined and if, on halting, the string \(f(x_1, \ldots, x_m) \) can be read from the tape by ignoring all symbols except \(s_1, \ldots, s_n \).

Post-Turing Programs
Notice that this definition allows \(\mathcal{P} \) to contain instructions that mention symbols other than \(s_1, \ldots, s_n \).

We further define the following:
The program \(\mathcal{P} \) will be said to compute \(f \) **strictly** if two additional conditions are met:
1. no instruction in \(\mathcal{P} \) mentions any other symbol than \(s_0, s_1, \ldots, s_n \);
2. whenever \(\mathcal{P} \) halts, the tape configuration is
\[
\ldots B \ B \ B \ y \ B \ B \ B \ldots
\]
where the string \(y \) contains no blanks.

Post-Turing Programs
Do you remember our simple example program?
It turned the tape configuration
\[
B \ x
\]
into the configuration
\[
B \ s_2 \ s_1 \ x
\]
So what does it compute?
It strictly computes the function \(f(x) = s_2 s_1 x \).

Another example (\(A = \{s_1\} \)):

Another example (\(A = \{s_1\} \)):

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A] RIGHT</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF B GOTO E</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>PRINT M</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>[B] RIGHT</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF s_1 GOTO B</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>[C] RIGHT</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF s_1 GOTO C</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>PRINT s_1</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>[D] LEFT</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF s_1 GOTO D</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF B GOTO D</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>PRINT s_1</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF s_1 GOTO A</td>
<td>B s_1 s_1</td>
</tr>
</tbody>
</table>

Post-Turing Programs
Another example (\(A = \{s_1\} \)):

Another example (\(A = \{s_1\} \)):

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A] RIGHT</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF B GOTO E</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>PRINT M</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>[B] RIGHT</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF s_1 GOTO B</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>[C] RIGHT</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF s_1 GOTO C</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>PRINT s_1</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>[D] LEFT</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF s_1 GOTO D</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF B GOTO D</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>PRINT s_1</td>
<td>B s_1 s_1</td>
</tr>
<tr>
<td>IF s_1 GOTO A</td>
<td>B s_1 s_1</td>
</tr>
</tbody>
</table>
Another example (A = \{s_1\}):

\begin{align*}
\text{[A]} & \quad \text{RIGHT} \quad B \quad M \quad s_1 \\
& \quad \text{IF B GOTO E} \\
& \quad \text{PRINT M} \\
\rightarrow & \quad \text{[B]} \quad \text{RIGHT} \\
& \quad \text{IF s_1 GOTO B} \\
& \quad \text{[C]} \quad \text{RIGHT} \\
& \quad \text{IF s_1 GOTO C} \\
& \quad \text{PRINT s_1} \\
& \quad \text{[D]} \quad \text{LEFT} \\
& \quad \text{IF s_1 GOTO D} \\
& \quad \text{IF B GOTO D} \\
& \quad \text{PRINT s_1} \\
& \quad \text{IF s_1 GOTO A}
\end{align*}
Post-Turing Programs

Another example (A = \{s_1\}):

[A] RIGHT B M s_1 B B
IF B GOTO E
PRINT M
[B] RIGHT
IF s_1 GOTO B
[C] RIGHT
IF s_1 GOTO C
PRINT s_1
[D] LEFT
IF s_1 GOTO D
IF B GOTO D
PRINT s_1
IF s_1 GOTO A

Post-Turing Programs

Another example (A = \{s_1\}):

[A] RIGHT B M s_1 B s_1
IF B GOTO E
PRINT M
[B] RIGHT
IF s_1 GOTO B
[C] RIGHT
IF s_1 GOTO C
PRINT s_1
[D] LEFT
IF s_1 GOTO D
IF B GOTO D
PRINT s_1
IF s_1 GOTO A

Post-Turing Programs

Another example (A = \{s_1\}):

[A] RIGHT B M s_1 B s_1
IF B GOTO E
PRINT M
[D] LEFT
IF s_1 GOTO D
IF B GOTO D
PRINT s_1
IF s_1 GOTO A

Post-Turing Programs

Another example (A = \{s_1\}):

[A] RIGHT B M s_1 B s_1
IF B GOTO E
PRINT M
[B] RIGHT
IF s_1 GOTO B
[C] RIGHT
IF s_1 GOTO C
PRINT s_1
[D] LEFT
IF s_1 GOTO D
IF B GOTO D
PRINT s_1
IF s_1 GOTO A
Post-Turing Programs

Another example ($A = \{s_1\}$):

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A]</td>
<td>RIGHT</td>
<td>B M s₁ B s₁</td>
</tr>
<tr>
<td></td>
<td>IF B GOTO E</td>
<td>PRINT M</td>
</tr>
<tr>
<td>[B]</td>
<td>RIGHT</td>
<td>IF s₁ GOTO B</td>
</tr>
<tr>
<td>[C]</td>
<td>RIGHT</td>
<td>IF s₁ GOTO C</td>
</tr>
<tr>
<td></td>
<td>PRINT s₁</td>
<td></td>
</tr>
<tr>
<td>[D]</td>
<td>LEFT</td>
<td>IF s₁ GOTO D</td>
</tr>
<tr>
<td></td>
<td>IF B GOTO D</td>
<td>PRINT s₁</td>
</tr>
<tr>
<td></td>
<td>IF s₁ GOTO A</td>
<td></td>
</tr>
</tbody>
</table>

Post-Turing Programs

Another example ($A = \{s₁\}$):

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A]</td>
<td>RIGHT</td>
<td>B M s₁ B s₁</td>
</tr>
<tr>
<td></td>
<td>IF B GOTO E</td>
<td>PRINT M</td>
</tr>
<tr>
<td>[B]</td>
<td>RIGHT</td>
<td>IF s₁ GOTO B</td>
</tr>
<tr>
<td>[C]</td>
<td>RIGHT</td>
<td>IF s₁ GOTO C</td>
</tr>
<tr>
<td></td>
<td>PRINT s₁</td>
<td></td>
</tr>
<tr>
<td>[D]</td>
<td>LEFT</td>
<td>IF s₁ GOTO D</td>
</tr>
<tr>
<td></td>
<td>IF B GOTO D</td>
<td>PRINT s₁</td>
</tr>
<tr>
<td></td>
<td>IF s₁ GOTO A</td>
<td></td>
</tr>
</tbody>
</table>
Post-Turing Programs

Another example (A = \{s_1\}):

\[\begin{align*}
[A] & \text{ RIGHT } B s_1 B s_1 \\
& \text{ IF } B \text{ GOTO } E \\
& \text{ PRINT } s_1 \\
\rightarrow & \text{IF } B \text{ GOTO E} \\
[B] & \text{ RIGHT } s_1 \\
& \text{ IF } s_1 \text{ GOTO B} \\
[C] & \text{ RIGHT } s_1 \\
& \text{ IF } s_1 \text{ GOTO C} \\
& \text{ PRINT } s_1 \\
[D] & \text{ LEFT } s_1 \\
& \text{ IF } s_1 \text{ GOTO D} \\
& \text{ IF } B \text{ GOTO D} \\
& \text{ PRINT } s_1 \\
& \text{ IF } s_1 \text{ GOTO A}
\end{align*} \]
Post-Turing Programs

Another example ($A = \{s_1\}$):

[A] RIGHT $B \ s_1 \ M \ B \ s_1$
IF B GOTO E \uparrow
PRINT M

[B] RIGHT
IF s_1 GOTO B

[C] RIGHT
IF s_1 GOTO C
PRINT s_1

[D] LEFT
IF s_1 GOTO D
IF B GOTO D
PRINT s_1
IF s_1 GOTO A

Post-Turing Programs

Another example ($A = \{s_1\}$):

[A] RIGHT $B \ s_1 \ M \ B \ s_1$
IF B GOTO E \uparrow
PRINT M

[B] RIGHT
IF s_1 GOTO B

[C] RIGHT
IF s_1 GOTO C
PRINT s_1

[D] LEFT
IF s_1 GOTO D
IF B GOTO D
PRINT s_1
IF s_1 GOTO A
Another example \((A = \{s_1\})\):

\[
\begin{align*}
[A] &\quad \text{RIGHT} &\quad B &\quad s_1 &\quad M &\quad s_1 &\quad s_1 \\
&\quad \text{IF } B &\quad \text{GOTO } E &\quad \uparrow \\
&\quad \text{PRINT } M \\
[B] &\quad \text{RIGHT} &\quad s_1 &\quad \text{GOTO } B \\
[C] &\quad \text{RIGHT} &\quad s_1 &\quad \text{GOTO } C &\quad \text{PRINT } s_1 \\
&D &\quad \text{LEFT} &\quad s_1 &\quad \text{GOTO } D &\quad \text{PRINT } s_1 &\quad \text{IF } s_1 &\quad \text{GOTO } A
\end{align*}
\]
Another example (A = \{s_1\}):

\begin{align*}
\text{[A]} & \rightarrow \text{RIGHT} \quad B \ s_1 \ s_1 \ B \ s_1 \ s_1 \\
& \quad \text{IF B GOTO E} \\
& \quad \text{PRINT M} \\
\text{[B]} & \rightarrow \text{RIGHT} \\
& \quad \text{IF s}_1 \ \text{GOTO B} \\
\text{[C]} & \rightarrow \text{RIGHT} \\
& \quad \text{IF s}_1 \ \text{GOTO C} \\
& \quad \text{PRINT s}_1 \\
\text{[D]} & \rightarrow \text{LEFT} \\
& \quad \text{IF s}_1 \ \text{GOTO D} \\
& \quad \text{IF B GOTO D} \\
& \quad \text{PRINT s}_1 \\
& \quad \text{IF s}_1 \ \text{GOTO A}
\end{align*}

Simulation of L_n in T

We are going to prove the following theorem:

Theorem 5.1: If $f(x_1, \ldots, x_m)$ is partially computable in L_n, then there is a Post-Turing program that computes f strictly.

Proof: Let φ be a program in L_n, which computes f. We assume that φ uses the following variables:

- $x_1, \ldots, x_m, z_1, \ldots, z_k, y$.

So all in all there are l variables, where $l = m + k + 1$. Therefore, we can rename the variables as follows (while keeping their order):

V_1, \ldots, V_l.

We will now construct a Post-Turing program Q that simulates φ step by step.

Of course, the information available to Q must be put onto the tape.

Therefore, we have to use a system for storing the values of all variables at certain positions on the tape:

$B \ x_1 \ B \ x_2 \ B \ \ldots \ B \ x_m \ B \ z_1 \ B \ z_2 \ B \ \ldots \ B \ z_k \ B \ y,$

where $x_1, x_2, \ldots, x_m, z_1, z_2, \ldots, z_k, y$ are the current values of the variables $x_1, x_2, \ldots, x_m, z_1, z_2, \ldots, z_k, y$ (using the original variable names).
Simulation of \(L_n \) in \(T \)

An advantage of this system is that the initial tape configuration is already in the correct form:

\[B \, x_1 \, B \, x_2 \, B \ldots B \, x_m \, . \]

↑

What needs to be done now is to show how to program the effect of each instruction type of \(L_n \) in the language \(T \).

In the following, we will define some macros that will help us to do this task.

The macro **GOTO** \(L \) has the expansion

\[
\text{IF } s_0 \text{ GOTO } L \quad \text{// Remember: } s_0 = B
\]

\[
\text{IF } s_1 \text{ GOTO } L
\]

\[
\vdots
\]

\[
\text{IF } s_n \text{ GOTO } L
\]

The macro **RIGHT TO NEXT BLANK** has the expansion

\[
\begin{align*}
[A] & \quad \text{RIGHT} \\
& \quad \text{IF } B \text{ GOTO E} \\
& \quad \text{GOTO A}
\end{align*}
\]

The macro **LEFT TO NEXT BLANK** has the expansion

\[
\begin{align*}
[A] & \quad \text{LEFT} \\
& \quad \text{IF } B \text{ GOTO E} \\
& \quad \text{GOTO A}
\end{align*}
\]

The macro **MOVE BLOCK RIGHT** has the expansion

\[
\begin{align*}
[C] & \quad \text{LEFT} \\
& \quad \text{IF } s_i \text{ GOTO } A_{i1} \\
& \quad \text{IF } s_i \text{ GOTO } A_{i2} \\
& \quad \vdots \\
& \quad \text{IF } s_i \text{ GOTO } A_{in} \\
& \quad \text{RIGHT} \quad i = 1, \ldots, n \\
& \quad \text{PRINT } s_i \\
& \quad \text{LEFT} \\
& \quad \text{GOTO C} \\
& \quad \text{RIGHT} \\
& \quad \text{PRINT B} \\
& \quad \text{LEFT} \\
& \quad s_{i1} \\
& \quad s_{i2} \\
& \quad s_{in} \\
& \quad \vdots
\end{align*}
\]

The macro **ERASE A BLOCK** has the expansion

\[
\begin{align*}
[A] & \quad \text{RIGHT} \\
& \quad \text{IF } B \text{ GOTO E} \\
& \quad \text{PRINT } B \\
& \quad \text{GOTO A}
\end{align*}
\]

This program causes the head to move to the right, erasing everything between its initial position and the first blank to its right.

The macro **MOVE BLOCK RIGHT** has the expansion

A number in square brackets after the name of a macro indicates **how many times** the macro expansion is to be inserted into the program.

For example, **MOVE BLOCK RIGHT** [4] is short for

MOVE BLOCK RIGHT

MOVE BLOCK RIGHT

MOVE BLOCK RIGHT

MOVE BLOCK RIGHT

MOVE BLOCK RIGHT
Simulation of L_n in \mathcal{T}

Now we can start simulating the three instruction types in the language L_n by Post-Turing programs.

We begin the instruction type $V_j \leftarrow s_i V_j$.

In order to place the symbol s_i to the left of the j-th variable on the tape, the values of the variables V_j, ..., V_1 must all be moved one square to the right to make room.

After inserting s_i, the tapehead must go back to the blank at the left of the value of V_1 in order to be ready for the next simulated instruction.

Simulation of L_n in \mathcal{T}

Here is the program for the simulation of $V_j \leftarrow s_i V_j$:

- RIGHT TO NEXT BLANK [i]
- MOVE BLOCK RIGHT [i – j + 1]
- RIGHT
- PRINT s_i
- LEFT TO NEXT BLANK [j]

Simulation of L_n in \mathcal{T}

Now we want to show how to simulate $V_j \leftarrow V_j^*$.

The problem here is that if V_j contains the null string, it must be left unchanged.

Thus, we move to the blank immediately to the right of the value of V_j.

Then we move one step to the left, and if we find another blank there, V_j must contain the null string (indicated by two successive blanks).

Simulation of L_n in \mathcal{T}

Here is the program for the simulation of $V_j \leftarrow V_j^*$:

- RIGHT TO NEXT BLANK [j]
- LEFT
- IF B GOTO C // V_j contains null string
- MOVE BLOCK RIGHT [j]
- RIGHT
- GOTO E
- [C] LEFT TO NEXT BLANK [j - 1]

Simulation of L_n in \mathcal{T}

And finally, here is the program for the simulation of $IF V_j ENDS s_i, GOTO L$:

- RIGHT TO NEXT BLANK [j]
- LEFT
- IF s_i GOTO C // V_j ends in s_i
- GOTO D
- [C] LEFT TO NEXT BLANK [j]
- GOTO L // Note: transfer all labels from L_n to \mathcal{T}
- [D] RIGHT // V_j could contain null string
- LEFT TO NEXT BLANK [j]

Simulation of L_n in \mathcal{T}

Now we are able to translate any program in the language L_n into a corresponding program in \mathcal{T}.

There is only one thing that needs to be fixed:

After the program terminates, we want only the string y to remain on the tape as the program’s output.

This can be done by appending the following code to our generated \mathcal{T} program:

- ERASE A BLOCK [1 – 1]

This will erase the values of the first $l – 1$ variables on the tape, so only the last variable will remain and the final tape configuration will be

... B B B y B B B ...

↑
Simulation of \mathcal{T} in \mathcal{L}

The next thing we want to prove is the following:

Theorem 6.1: If there is a Post-Turing program that computes the partial function $f(x_1, \ldots, x_m)$, then f is partially computable.

Since our definition of partial computability is based on the language \mathcal{L}, this theorem states the following:

If the m-ary partial function f on A^* is computed by a program of \mathcal{T}, then there is a program of \mathcal{L} that computes f (using base n values of strings).