Minimalization

So either \(p_n + 1 \) **is itself a prime or it is divisible by a prime** \(> p_n \).

In either case there is a prime \(q \) **such that** \(p_n < q \leq p_n + 1 \), **which gives us the inequality that we wanted to verify:**
\[p_{n+1} \leq p_n + 1. \]

But now look at the recursion again:
\[p_0 = 0 \]
\[p_{n+1} = \min_{t \geq p_n} \text{Prime}(t) \text{ & } t > p_n. \]

This is not exactly how we defined recursion. We should reformulate this definition.

To do so, we define the (obviously) primitive recursive function
\[h(y, z) = \min_{t \geq y} \text{Prime}(t) \text{ & } t > y \]

Then we set
\[k(x) = h(x, x! + 1), \]
which is another primitive recursive function.

Then our recursion equations reduce to
\[p_0 = 0 \]
\[p_{n+1} = k(p_n), \]
So that we can (finally!) conclude that \(p_n \) **is a primitive recursive function.**

Minimalization

Finally, we want to discuss **minimalization without a bound.

Let us write
\[\min_y P(x_1, ..., x_n, y) \]
for the least value of \(y \) for which the predicate \(P \) is true if there is such a value.

If there is no such value of \(y \), then \(\min_y P(x_1, ..., x_n, y) \) is **undefined.**

(Note the difference with bounded minimalization.)

Obviously, unbounded minimalization of a predicate can produce a function that is not total.

Example:

The function \(x - y = \min_z [y + z = x] \) is undefined for \(x < y \).

We will see later that there are primitive recursive predicates \(P(x, y) \) such that \(\min_y P(x, y) \) is a total function which is **not primitive recursive.**

Theorem 7.2

If \(P(x_1, ..., x_n, y) \) **is a computable predicate and if**
\[g(x_1, ..., x_n, y) = \min_y P(x_1, ..., x_n, y), \]
then \(g \) **is a partially computable function.**

Proof:

The following program computes \(g \):

[A]
\[\text{IF } P(X_1, ..., X_n, Y) \text{ GOTO E} \]
\[Y \leftarrow Y + 1 \]
\[\text{GOTO A} \]

Pairing Functions and Gödel Numbers

How can we code pairs of numbers by single numbers?

Let us define the following primitive recursive function:
\[(x, y) = 2^y(2y + 1) \]

Obviously, \(2^y(2y + 1) \) **can never be 0, so we have:**
\[(x, y) + 1 = 2^y(2y + 1). \]
Pairing Functions and Gödel Numbers

\((x, y) + 1 = 2^x(2y + 1)\).

If \(z\) is any given number, there is a unique solution \(x, y\) to the equation

\((x, y) = z\).

\(x\) is the largest number such that \(2^x \mid (z + 1)\),
and \(y\) is the solution of the equation

\(2y + 1 = (z + 1)/2^x\).

This equation has a unique solution because

\((z + 1)/2^x\) must be odd
(if it were even, we could have chosen a greater \(x\)).