The Halting Problem

Let us define the predicate \texttt{HALT}(x, y).
For a given number y, let \(\varphi \) be the program such that
\[\#(\varphi) = y. \]
Then \texttt{HALT}(x, y) is true if \(\psi_{\varphi}(1)(x) \) is defined and false if
\(\psi_{\varphi}(1)(x) \) is undefined.
In other words:
\[\texttt{HALT}(x, y) \iff \text{program number } y \text{ eventually halts on input } x. \]
Here comes a surprise:

Theorem 2.1: \texttt{HALT}(x, y) is not a computable predicate.

Proof (by contradiction):
Assume that \texttt{HALT}(x, y) were computable.
Then we could write the following program \(\varphi \):

\begin{verbatim}
[A] IF HALT(X, X) GOTO A
\end{verbatim}

This program \(\varphi \) would compute the following function:
\[\psi_{\varphi}(1)(x) = \begin{cases}
1 & \text{if } \texttt{HALT}(x, x) \\
0 & \text{if } \neg \texttt{HALT}(x, x)
\end{cases} \]
Now let \(\#(\varphi) = y_0 \). Then by the definition of \texttt{HALT} we get:
\[\texttt{HALT}(x, y_0) \iff \neg \texttt{HALT}(x, x) \]
For input \(x = y_0 \) we then have:
\[\texttt{HALT}(y_0, y_0) \iff \neg \texttt{HALT}(y_0, y_0) \]
Contradiction!

So finally we have an example of a predicate that is not computable by any program in the language \(L \).
We would even like to conclude the following:
There is no algorithm that, given a program of \(L \) and an input to that program, can determine whether or not the given program will eventually halt on the given input.
This is called the unsolvability of the halting problem.

It may surprise you that there is no algorithm for solving the halting problem.
Is it not possible for a computer scientist to analyze a given program and find out whether it will terminate for a particular input or not (even if this analysis takes a very long time)?
No, actually we can devise a very simple program in \(L \) for which to date nobody is able to tell whether it will ever terminate.

This program is based on Goldbach's conjecture, which assumes that every even number \(\geq 4 \) is the sum of two prime numbers.
For example, \(4 = 2 + 2, 6 = 3 + 3, 48 = 41 + 7 \).
It would be easy to write a program in \(L \) that searches for a counterexample to this conjecture.
This program would check the following predicate for increasing values \(n \):
\[\neg (\exists x \geq 2) (\exists y \geq 2) [\text{Prime}(x) \& \text{Prime}(y) \& x + y = n] \]

Nobody knows whether this program will ever halt.
Universality

For each $n > 0$, let us define:

$$\Phi(n)(x_1, ..., x_n, y) = \psi_P(n)(x_1, ..., x_n), \text{ where } \#(\psi) = y.$$

Theorem 3.1 (Universality Theorem):

For each $n > 0$, the function $\Phi(n)(x_1, ..., x_n, y)$ is partially computable.

This is one of the most important theorems in computability theory.

We will prove it by providing instructions for writing a program U_n that computes $\Phi(n)$ for each $n > 0$.

In other words, for each $n > 0$ we want to have:

$$\psi_{U_n}^{(n+1)}(x_1, ..., x_n, x_{n+1}) = \Phi(n)(x_1, ..., x_n, x_{n+1}).$$

These programs U_n are called universal.

For example, U_1 can be used to compute any partially computable function of one variable.

If there is a program P that computes $f(x)$, and $\#(P) = y$, then $f(x) = \Phi(1)(x, y) = \psi_{U_1}(2)(x, y)$.

It is useful to think of the programs U_n in terms of interpreters of programs in L.

The universal programs must:

- decode the number of the program given to them,
- keep track of the current snapshot during program execution, and
- generate the next snapshot based on the current one and the current instruction.

When we write such programs, we will freely use macros referring to functions that we already know to be primitive recursive.

We will also freely use label and variable names beyond those specified for the language L.

In order to store the current snapshot, we need to keep track of two numbers:

- K is the number of the instruction to be executed next, and
- S is the current state coded as a Gödel number (see previous slide).

Now we are ready to write the program U_n for computing $Y = \Phi(n)(X_1, ..., X_n, X_{n+1})$.

We will explain U_n piece by piece and finally put the pieces together.

In describing the state of a computation, we assume all variables to have the value 0 if not assigned a different value.

Then we can code the state of the computation by the Gödel number $[a_1, ..., a_m]$, where a_i is the value of the i-th variable in our ordered list.

Obviously, m is chosen so that all a_i for $i > m$ are 0.

For example, the state $Y = 1, X = 2, Z = 1$ is coded by the following number:

$$[1, 2, 0, 0, 1] = 2 \cdot 3^2 \cdot 11 = 198.$$