What kind of function can such a network realize?

Although we only looked at two-dimensional input, our findings apply to any dimensionality \(n \).

For example, for \(n = 3 \), our neuron can realize any function that divides the three-dimensional input space along a two-dimensional plane.

Capabilities of Threshold Neurons

By choosing appropriate weights \(w \), and threshold \(\theta \), we can place the line dividing the input space into regions of output 0 and output 1 in any position and orientation.

Therefore, our threshold neuron can realize any linearly separable function \(\mathbb{R}^n \rightarrow \{0, 1\} \).

Although we only looked at two-dimensional input, our findings apply to any dimensionality \(n \).

For example, for \(n = 3 \), our neuron can realize any function that divides the three-dimensional input space along a two-dimensional plane.

Capabilities of Threshold Neurons

What kind of function can such a network realize?

Assume that the dotted lines in the diagram represent the input-dividing lines implemented by the neurons in the first layer:

Then, for example, the second-layer neuron could output 1 if the input is within a polygon, and 0 otherwise.

Capabilities of Threshold Neurons

What do we do if we need a more complex function?

Just like Threshold Logic Units, we can also combine multiple artificial neurons to form networks with increased capabilities.

For example, we can build a two-layer network with any number of neurons in the first layer giving input to a single neuron in the second layer.

The neuron in the second layer could, for example, implement an AND function.

Capabilities of Threshold Neurons

However, we still may want to implement functions that are more complex than that.

An obvious idea is to extend our network even further.

Let us build a network that has three layers, with arbitrary numbers of neurons in the first and second layers and one neuron in the third layer.

The first and second layers are completely connected, that is, each neuron in the first layer sends its output to every neuron in the second layer.

Capabilities of Threshold Neurons

What type of function can a three-layer network realize?
Capabilities of Threshold Neurons

Assume that the polygons in the diagram indicate the input regions for which each of the second-layer neurons yields output 1:

Then, for example, the third-layer neuron could output 1 if the input is within any of the polygons, and 0 otherwise.

Terminology

Usually, we draw neural networks in such a way that the input enters at the bottom and the output is generated at the top.

Arrows indicate the direction of data flow.

The first layer, termed input layer, just contains the input vector and does not perform any computations.

The second layer, termed hidden layer, receives input from the input layer and sends its output to the output layer.

After applying their activation function, the neurons in the output layer contain the output vector.

Linear Neurons

Obviously, the fact that threshold units can only output the values 0 and 1 restricts their applicability to certain problems.

We can overcome this limitation by eliminating the threshold and simply turning f_i into the identity function so that we get:

$$x_i(f) = \text{net}_i(f)$$

With this kind of neuron, we can build feedforward networks with m input neurons and n output neurons that compute a function $f: \mathbb{R}^m \rightarrow \mathbb{R}^n$.

Capabilities of Threshold Neurons

The more neurons there are in the first layer, the more vertices can the polygons have.

With a sufficient number of first-layer neurons, the polygons can approximate any given shape.

The more neurons there are in the second layer, the more of these polygons can be combined to form the output function of the network.

With a sufficient number of neurons and appropriate weight vectors w_i, a three-layer network of threshold neurons can realize any (!) function $\mathbb{R}^n \rightarrow \{0, 1\}$.

Linear Neurons

Linear neurons are quite popular and useful for applications such as interpolation.

However, they have a serious limitation: Each neuron computes a linear function, and therefore the overall network function $f: \mathbb{R}^m \rightarrow \mathbb{R}^n$ is also linear.

This means that if an input vector x results in an output vector y, then for any factor ϕ the input ϕx will result in the output ϕy.

Obviously, many interesting functions cannot be realized by networks of linear neurons.
Gaussian Neurons

Another type of neurons overcomes this problem by using a Gaussian activation function:

$$f_i(\text{net}_i(t)) = e^{-\frac{\text{net}_i(t) - \tau_i}{\sigma_i}}$$

Gaussian neurons are able to realize non-linear functions. Therefore, networks of Gaussian units are in principle unrestricted with regard to the functions that they can realize.

The drawback of Gaussian neurons is that we have to make sure that their net input does not exceed 1. This adds some difficulty to the learning in Gaussian networks.

Sigmoidal Neurons

Sigmoidal neurons accept any vectors of real numbers as input, and they output a real number between 0 and 1. Sigmoidal neurons are the most common type of artificial neuron, especially in learning networks.

A network of sigmoidal units with m input neurons and n output neurons realizes a network function $f: \mathbb{R}^m \rightarrow (0,1)^n$

The parameter τ controls the slope of the sigmoid function, while the parameter θ controls the horizontal offset of the function in a way similar to the threshold neurons.

Correlation Learning

Hebbian Learning (1949):

“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes place in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.”

Weight modification rule:

$$\Delta w_{ij} = c x_i x_j$$

Eventually, the connection strength will reflect the correlation between the neurons’ outputs.

Competitive Learning

- Nodes compete for inputs
- Node with highest activation is the winner
- Winner neuron adapts its tuning (pattern of weights) even further towards the current input
- Individual nodes specialize to win competition for a set of similar inputs
- Process leads to most efficient neural representation of input space
- Typical for unsupervised learning
Feedback-Based Weight Adaptation

- Feedback from the environment (possibly a teacher) is used to improve the system's performance.
- Synaptic weights are modified to reduce the system's error in computing a desired function.
- For example, if increasing a specific weight increases error, then the weight is decreased.
- Small adaptation steps are needed to find optimal set of weights.
- Learning rate can vary during the learning process.
- Typical for supervised learning.

Supervised vs. Unsupervised Learning

Examples:

- **Supervised learning:** An archaeologist determines the gender of a human skeleton based on many past examples of male and female skeletons.
- **Unsupervised learning:** The archaeologist determines whether a large number of dinosaur skeleton fragments belong to the same species or multiple species. There are no previous data to guide the archaeologist, and no absolute criterion of correctness.

Applications of Neural Networks

- Classification
- Clustering
- Vector quantization
- Pattern association
- Forecasting
- Control applications
- Optimization
- Search
- Function approximation