Exemplar Analysis

When building a neural network application, we must make sure that we choose an appropriate set of exemplars (training data):

- The entire problem space must be covered.
- There must be no inconsistencies (contradictions) in the data.
- We must be able to correct such problems without compromising the effectiveness of the network.

Ensuring Coverage

For many applications, we do not just want our network to classify any kind of possible input. Instead, we want our network to recognize whether an input belongs to any of the given classes or it is “garbage” that cannot be classified.

To achieve this, we train our network with both “classifiable” and “garbage” data (null patterns). For the null patterns, the network is supposed to produce a zero output, or a designated “null neuron” is activated.

Ensuring Coverage

In many cases, we use a 1:1 ratio for this training, that is, we use as many null patterns as there are actual data samples. We have to make sure that all of these exemplars taken together cover the entire input space.

If it is certain that the network will never be presented with “garbage” data, then we do not need to use null patterns for training.

Ensuring Consistency

Assume a BPN with a training set including the exemplars (a, b) and (a, c).

Whenever the exemplar (a, b) is chosen, the network adjust its weights to present an output for a that is closer to b.

Whenever (a, c) is chosen, the network changes its weights for an output closer to c, thereby “unlearning” the adaptation for (a, b).

In the end, the network will associate input a with an output that is “between” b and c, but is neither exactly b or c, so the network error caused by these exemplars will not decrease.

For many applications, this is undesirable.

Ensuring Consistency

To identify such conflicts, we can apply a search algorithm to our set of exemplars.

How can we resolve an identified conflict? Of course, the easiest way is to eliminate the conflicting exemplars from the training set.

However, this reduces the amount of training data that is given to the network. Eliminating exemplars is the best way to go if it is found that these exemplars represent invalid data, for example, inaccurate measurements.

In general, however, other methods of conflict resolution are preferable.
Ensuring Consistency

Another method combines the conflicting patterns. For example, if we have exemplars (0011, 0101), (0011, 0010), we can replace them with the following single exemplar: (0011, 0111).

The way we compute the output vector of the new exemplar based on the two original output vectors depends on the current task.

It should be the value that is most “similar” (in terms of the external interpretation) to the original two values.

Ensuring Consistency

Alternatively, we can alter the representation scheme. Let us assume that the conflicting measurements were taken at different times or places.

In that case, we can just expand all the input vectors, and the additional values specify the time or place of measurement.

For example, the exemplars (0011, 0101), (0011, 0010) could be replaced by the following ones: (100101, 0101), (010011, 0010).

Training and Performance Evaluation

How many samples should be used for training?

Heuristic: At least 5-10 times as many samples as there are weights in the network.

Formula (Baum & Haussler, 1989):

\[P > \frac{|W|}{(1-a)} \]

P is the number of samples, \(|W|\) is the number of weights to be trained, and \(a\) is the desired accuracy (e.g., proportion of correctly classified samples).

Training and Performance Evaluation

What learning rate \(\eta\) should we choose?

The problems that arise when \(\eta\) is too small or to big are similar to the Adaline.

Unfortunately, the optimal value of \(\eta\) entirely depends on the application.

Values between 0.1 and 0.9 are typical for most applications.

Often, \(\eta\) is initially set to a large value and is decreased during the learning process.

Leads to better convergence of learning, also decreases likelihood of “getting stuck” in local error minimum at early learning stage.

Formula

\[P > \frac{|W|}{(1-a)} \]

When training a BPN, what is the acceptable error, i.e., when do we stop the training?

The minimum error that can be achieved does not only depend on the network parameters, but also on the specific training set.

Thus, for some applications the minimum error will be higher than for others.
Training and Performance Evaluation

An insightful way of performance evaluation is **partial-set training**.
The idea is to split the available data into two sets –
the *training set* and the *test set*.
The network’s performance on the second set indicates how well the network has actually learned the desired mapping.
We should expect the network to *interpolate*, but not *extrapolate*.
Therefore, this test also evaluates our choice of training samples.

Example I: Predicting the Weather

Let us study an interesting neural network application. Its purpose is to **predict the local weather** based on a set of current weather data:
- **temperature** (degrees Celsius)
- **atmospheric pressure** (inches of mercury)
- **relative humidity** (percentage of saturation)
- **wind speed** (kilometers per hour)
- **wind direction** (N, NE, E, SE, S, SW, W, or NW)
- **cloud cover** (0 = clear … 9 = total overcast)
- **weather condition** (rain, hail, thunderstorm, …)

Example I: Predicting the Weather

How should we **format** the input patterns?
We need to represent the current weather conditions by an **input vector** whose elements range in magnitude between zero and one.
When we inspect the raw data, we find that there are **two types of data** that we have to account for:
- Scaled, continuously variable values
- n-ary representations of category values

Example I: Predicting the Weather

If the test set only contains one exemplar, this type of training is called **“hold-one-out” training**.
It is to be performed sequentially for every individual exemplar.
This, of course, is a very time-consuming process.
For example, if we have 1,000 exemplars and want to perform 100 epochs of training, this procedure involves 1,000 · 999·100 = 99,900,000 training steps.
Partial-set training with a 700-300 split would only require 70,000 training steps.
On the positive side, the advantage of hold-one-out training is that all available exemplars (except one) are use for training, which might lead to better network performance.

Example I: Predicting the Weather

We assume that we have access to the same data from several surrounding weather stations. There are eight such stations that surround our position in the following way:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100 km</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example I: Predicting the Weather

The following data can be scaled:
- **temperature** (-10… 40 degrees Celsius)
- **atmospheric pressure** (26… 34 inches of mercury)
- **relative humidity** (0… 100 percent)
- **wind speed** (0… 250 km/h)
- **cloud cover** (0… 9)
We can just scale each of these values so that its lower limit is mapped to some ε and its upper value is mapped to (1 - ε).
These numbers will be the components of the input vector.
Example I: Predicting the Weather

Usually, wind speeds vary between 0 and 40 km/h. By scaling wind speed between 0 and 250 km/h, we can account for all possible wind speeds, but usually only make use of a small fraction of the scale. Therefore, only the most extreme wind speeds will exert a substantial effect on the weather prediction. Consequently, we will use two scaled input values:
- wind speed ranging from 0 to 40 km/h
- wind speed ranging from 40 to 250 km/h

Example I: Predicting the Weather

Since the input does not only include our station, but also the eight surrounding ones, the input layer of the network looks like this:

```
  our station       north       northwest
```

The network has 207 input neurons, which accept 207-component input vectors.

Example I: Predicting the Weather

How about the non-scalable weather data?
- Wind direction is represented by an eight-component vector, where only one element (or possibly two adjacent ones) is active, indicating one out of eight wind directions.
- The subjective weather condition is represented by a nine-component vector with at least one, and possibly more, active elements.

With this scheme, we can encode the current conditions at a given weather station with 23 vector components:
- one for each of the four scaled parameters
- two for wind speed
- eight for wind direction
- nine for the subjective weather condition

Example I: Predicting the Weather

What should the output patterns look like?
We want the network to produce a set of indicators that we can interpret as a prediction of the weather in 24 hours from now.

In analogy to the weather forecast on the evening news, we decide to demand the following four indicators:
- a temperature prediction
- a prediction of the chance of precipitation occurring
- an indication of the expected cloud cover
- a storm indicator (extreme conditions warning)

Example I: Predicting the Weather

Each of these four indicators can be represented by one scaled output value:
- temperature (-10… 40 degrees Celsius)
- chance of precipitation (0%… 100%)
- cloud cover (0… 9)
- storm warning: two possibilities:
 - 0: no storm warning; 1: storm warning
 - probability of serious storm (0%… 100%)

Of course, the actual network outputs range from ε to (1 - ε), and after their computation, if necessary, they are scaled to match the ranges specified above.