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Abstract 

A measure known as inspection time (IT) has been 

shown to account for approximately 25% of the variance 

in peoples’ intellectual abilities, as measured by IQ.  

Despite this strong relationship, inspection time has had 

only limited success in expanding our knowledge 

regarding the nature of intelligence, which can be 

attributed to a lack of understanding of the 

neurophysiology underlying IT.  In the present study we 

present a hypothesis in which a participant’s IT is 

determined by their brain’s ability to adapt its neural 

functioning based on experience.  This ability is often 

referred to as neural plasticity.  To test this hypothesis, 

we related participants’ ITs to a series of neural plasticity 

measures identified during a spatial learning task and a 

reinforcement learning task.  In both tasks a significant 

correlation was found; however, the correlations found 

were in opposing directions.  A subsequent analysis of the 

tasks revealed a potentially significant relationship 

between participants’ learning ability and their focus of 

attention.  This led us to the conclusion that IT may be 

determined by participants’ neural plasticity through a 

measure known as neural adaptability, which relates 

participant experience, learning, and attention. 
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1. INTRODUCTION 

Individual differences in intelligence can be 

measured using standardized tests; for example, the 

Wechsler Adult Intelligence Scale (WAIS) [1], the 

Woodcock-Johnson Psycho-Educational Battery-Revised 

(WJ-R) [2], or Raven’s Progressive Matrices [3].  A very 

active avenue of research has aimed itself at discovering 

the neurophysiological source of these differences.  One 

method that has been somewhat successful in relatively 

recent history is to relate individual differences in 

measured intelligence (IQ) to measures of basic neural 

processes [4].  For instance, based on the results of 

several studies that relate reaction time to IQ, Jensen 

hypothesized that: “Loss of information due to overload 

interference and decay of traces that were inadequately 

encoded or rehearsed for storage or retrieval from LTM 

[long-term memory] results in ‘break-down’ and failure to 

grasp all the essential relationships among the elements of 

a complex problem needed for its solution” [5, pp. 122].  

Jensen further hypothesized that this ‘break-down’ of 

information encoding may potentially be avoided by 

faster brains (i.e., those that exhibit faster processing 

speeds).  Nevertheless, reaction time paradigms have 

atrophied due to modest correlations with IQ and a lack of 

theoretical tractability in accounting for the individual 

differences in intelligence [6,7]. 

Another measure, inspection time (IT), has since 

been shown to account for a relatively large portion of the 

variance in individual differences in intelligence as well 

as provide a stronger theoretical rationale for its relation 

to IQ [7]; the estimated, corrected correlation between IT 

and IQ is -0.50, or, another way, IT accounts for 

approximately 25% of the variance in IQ scores [7-9].  

Indeed, the link between IT and mental abilities is one 

that has been replicated many times [e.g., 10-13].  One 

consistent finding by Burns et al. [11-13] is that IT 

correlates with a factor of intelligence from the Gf-Gc 

theory [14] known as general speed of processing (Gs; a 

factor of intelligence that refers to the ability or speed at 

which one is able to perform easy or over-learned 

problems).
12

 

IT is most often measured by a simple two-choice 

forced-discrimination task.  The task begins by focusing 

participants’ attention using a simple visual cue (see 

Figure 1a).  Following the cue and a short, random delay, 

the target stimulus (see Figure 1b) –referred to as the pi-

figure due to its resemblance  to  the  Greek  letter  Π–  is  
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Fig. 1 Figures used in the IT task: (a) the cue figure, (b) 

the stimulus (pi-) figure, and (c) the backward-mask figure. 

 

presented for some predetermined period of time.  Two 

potential target figures exist, one in which the right leg of 

the pi-figure is slightly longer and one in which the left 

leg is slightly longer.  Immediately following the 

presentation of the target stimulus, a mask (see Figure 1c) 

is presented to disrupt any visual persistence that may be 

available in the form of iconic storage.  Since the mask 

essentially works backward in time (i.e., it disrupts the 

perception of previously presented visual stimuli), the 

mask is considered a ‘backward-mask’.  Participants’ task 

is to determine which leg of the target stimulus was 

longer (or shorter).  The pertinent measure of the IT task 

is the period of time between the onset of the target 

stimulus and the onset of the mask (SOA: stimulus onset 

asynchrony).  The IT task was designed such that, given a 

long enough SOA, the task can be completed perfectly by 

participants with a wide range of intellectual abilities; 

however, by reducing the SOA to the order of tens of 

milliseconds, chance performance levels can be reached.  

The task is repeated using a range of SOAs until a critical 

SOA (CSOA) can be confidently identified under which 

the participant performs the discrimination at a preset 

accuracy level (e.g., 75%); IT is operationally defined as 

this CSOA.  Despite the success that IT has achieved in 

relating IQ to a simple cognitive task measure, issues still 

exist that have –so far– prevented IT from revealing the 

neurophysiological basis underlying the relationship 

between IT and IQ. 

Garlick [15] has presented a hypothesis about how 

the structure of the brain may lead to the phenomena 

embodied by individual differences in intelligence.  In his 

hypothesis, Garlick argues that the power of the brain is 

inherently stored in the connections between neurons: 

“Rather, the neuron is a relatively simple processing unit 

that operates independently of other neurons and whose 

firing is determined by changing the connection between 

itself and the other neurons (Judd, 1990) [16].  Therefore, 

this argues for a critical role for the connection in the 

production of meaningful output.” [15, pp. 118]. 

The basic tenet of Garlick’s hypothesis is that, within 

the general population, individual differences exist in the 

brain’s capacity to organize itself based on experience, 

which is often referred to as neural plasticity.  As a result 

of these differences in neural plasticity: “individuals with 

more plastic brains would be more highly developed at all 

intellectual abilities, irrespective of their superficial 

characteristics.” [15, pp. 121]. 

Burns et al. [17] have recently tested an intriguing 

hypothesis regarding individual differences in intelligence 

based on the theorizing of Garlick about the role of neural 

plasticity in intelligence.  In their study, they attempted to 

determine if measures of perceptual learning during the IT 

task and a motion discrimination task are related to 

intelligence factors obtained from a subset of tests in the 

Woodcock-Johnson Battery-Revised [2].  A single 

correlation of r = 0.35 between perceptual learning in the 

IT task and Gs was found, and the conclusion that: “Such 

a parameter may at least partially define a general 

intelligence factor.” [17, pp. 97] was reached. 

Although it was not discussed by Burns et al., neural 

plasticity could be more generally related to IT; that is, a 

participant’s IT could be considered to be indicative of 

the efficiency of one’s basic visual processing areas as a 

result of their individual neural plasticity.  Under this 

assumption, participants with more plastic brains will 

have more efficient visual processing areas, which would 

result in quicker processing of visual stimuli –and a lower 

IT.  One prediction made by such an interpretation of IT 

is that participants who are adept at the IT task should 

also be adept at other simple visual tasks; indeed, this was 

found by Garaas & Pomplun [18], which begs the 

question, how might having more efficient visual 

processing areas result in lower ITs?  To answer this 

question, it is necessary to further examine the nature of 

the task used to measure IT. 

Since the inception of IT, a number of theories have 

been put forward to resolve the cognitive processes of 

which IT is a measure.  Originally, IT was regarded an 

estimate of the time required to make a single, discrete 

sensory observation [19].  Subsequently, following the 

broader research of visual masking studies, White [20,21] 

refuted the original theory in lieu of a theory that places 

IT as a measure of participants’ temporal resolution.  

Essentially, using the integration theory of visual 

masking, White’s theory states that during sufficiently 

short SOAs, the stimulus and mask figures become 

integrated into a single figure, thus preventing successful 

discrimination of the longer leg in the pi-figure. 

However, the visual masking theory on which 

White’s theory of IT is based has since been shown to be 

incorrect due to its inability to account for a handful of 

observed effects found in various visual masking studies 
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[22].  For instance, certain masks that do not overlap 

spatially with the target –a prime example is a mask with 

four dots placed at the corners of an invisible box 

surrounding the stimulus– can produce masking effects 

[22], which cannot be explained by the integration theory. 

As an alternative, Di Lollo et al. [22] provide an 

account of visual masking which factors in recent 

neuroanatomical and psychophysical evidence.  Their 

theory, the object substitution theory of visual masking 

[23], involves a recurring neural loop between higher- and 

lower-order visual areas that is used to process visual 

stimuli for conscious perception.  This theory gives 

feedback connections that transmit visual information 

from higher-order visual areas (e.g., V5) to lower-order 

visual areas (e.g., V1) a critical role in the perception of 

visual stimuli, which has been verified by transcranial 

magnetic stimulation (TMS) studies [24,25].  In an 

interpretation of these TMS studies in which conscious 

perception of a visual stimulus is interrupted by TMS 

applied to area V1 following activation by the stimulus of 

area V5 and higher, Bullier [26] proposed that an early 

wave of activation is conveyed by the magnocellular 

pathway (transient motion-related signals) through the 

hierarchy of visual areas; the computations of the higher-

order visual areas are then projected back to the lower-

order visual areas to aid in the processing of visual 

information transmitted by the slower parvocellular 

pathway (sustained form-related signals), and, if this 

process is interrupted, conscious perception of the visual 

stimulus is blocked.  Based upon a view of visual 

processing involving critical feedback projections, the 

backward mask presented during the IT task can be 

considered to disrupt successful discrimination at 

sufficiently short SOAs by interfering with the secondary 

processing by lower-order visual areas receiving feedback 

projections.  Specifically, following the presentation of 

the mask, when the projections from higher-order visual 

areas reach lower-order visual areas, the target stimulus is 

no longer driving the feedforward processing and the two 

converging signals no longer match each other; thus, 

conscious perception of the target stimulus is effectively 

blocked.  From this interpretation, IT represents a speed 

processing that is based upon the efficiency of the 

neurons (or neural connections) that comprise the 

feedback loop. 

To test this theory of IT, we had participants perform 

the standard IT task as well as two tasks that test 

participants’ learning abilities from which we derived 

various measures of neural plasticity.  We hypothesize 

that a positive correlation should exist between IT and the 

measures of neural plasticity since, in this theory, IT 

represents a level of neural efficiency that is a direct result 

of participants’ individual neural plasticity.  The first 

learning task is the contextual cueing task, in which 

participants can be shown to significantly improve their 

reaction time by implicitly learning the visual context of a 

target item.  The second task, the Iowa Gambling Task, 

provides a measure of participants’ ability to learn the 

risks and rewards associated with previous experiences.  

These tasks represent the broader categories of spatial 

learning and reinforcement learning, respectively. 

2. INSPECTION TIME TASK 

2.1 Method 

2.1.1 Participants. The IT task was carried out with the 

participation of 36 naïve individuals.  Participants were 

paid a $20 honorarium for their participation.  The 

average age of the participants was 28.4 ± 11.7 (s.d.) 

years and the average number of years of education of 

participants was 14.8 ± 1.8 years.  All of the participants 

had intact vision and some used corrective lenses.  In 

accordance with the Helsinki Declaration of Human 

Rights, participants were given full disclosure about their 

role in the task, and written informed consent was 

obtained from all participants.  The study was conducted 

with the approval of the Institutional Review Board at the 

University of Massachusetts Boston. 

 

2.1.2 Apparatus. Stimuli were presented on a 21-inch 

Dell P1130 monitor using the resolution 1024×768 and a 

refresh rate of 85 Hz.  Participants sat approximately 40 

cm from the screen, resulting in a horizontal and a vertical 

viewing angle of 56.9 and 42.7, respectively. 

Participants’ responses were obtained using a standard PC 

mouse. 

 

2.1.3 Materials. Participants’ ITs were recorded using a 

slight variation of the standard IT task, which is very 

similar to that used by Garaas & Pomplun [19].  In total, 

four figures were used during the IT task: a cue figure, 

two target figures, and a mask figure.  The cue figure 

consisted of a simple cross subtending 2.2° in both width 

and height (see Figure 1a).  The two target figures (i.e., 

pi-figures; see Figure 1b) consisted of two parallel 

vertical lines connected at their tops by a horizontal line.  

The longer vertical line was 11.1° in length; the shorter 

vertical line was 8.3° in length; and the horizontal line 

was 5.6° in length.  The mask figure consisted of five pi-

figures randomly presented up to 2.6° from the center of 

the target stimulus (see Figure 1c).  Both vertical lines 

(i.e., legs) of the pi-figures in the mask were of the longer 

variety. 

 

2.1.4 Procedure. Participants completed 300 trials of the 

IT task, where each trial consisted of the presentation of a 

cue, target stimulus, and mask.  The cue was presented for 

a random period of time that varied between 500 and 

1000 ms in the lower-middle of the screen.  Immediately 
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following the presentation of the cue, one of the two 

potential target stimuli was presented for a preset amount 

of time (SOA).  It was random as to which version of the 

target stimulus was presented during any given trial.  

Immediately following the target stimulus, the mask was 

presented for 300 ms. 

To familiarize participants with the task, six initial 

trials were presented using SOAs 800, 800, 800, 560, 320, 

and 160 ms respectively.  Following the presentation of 

the mask, participants pressed either the left or right 

mouse button to indicate they believed that the longer leg 

of the target stimulus was on the left or right side, 

respectively.  Participants were instructed to take as long 

as they needed to respond to a trial.  Following the initial 

trials, participants completed the 300 trials in pairs, with 

the first pair of trials using an SOA of 80 ms.  Pairs of 

trials continued thereafter such that if a participant 

responded correctly to both trials of a given pair, the next 

pair had their SOAs decreased by 11.8 ms; whereas, if 

either trial was responded to incorrectly, the SOAs were 

increased by 11.8 ms.  Participants’ ITs were determined 

by fitting a sigmoid curve to the accuracy of their 

responses as a function of the SOA and taking the SOA at 

which the curve crossed 75% accuracy.  Figure 2 

illustrates an example curve-fitting for a single 

participant’s responses during the IT task. 

2.2 Results & Discussion 

Results were obtained for all but six participants 

whose responses were too erratic to allow for a confident 

determination of their IT.  The mean IT of the remaining 

30 participants was 72 ± 37 (s.d.) ms.  ITs recorded here 

are similar to those recorded using a similarly designed IT 

task [18]. 

 

Fig. 2 A sample psychometric curve for a single 

participant from the IT task. 

3. CONTEXTUAL CUEING TASK 

Contextual cueing represents a robust collection of 

visual search tasks in which participants are able to 

improve reaction times by implicitly learning the spatial 

configuration of distractor items (i.e., the visual context); 

see Chun [27] for a review.  In the traditional form of 

contextual cueing tasks –from which the task presented 

hereafter was modeled–, participants search for a target 

item (T) among a series distractors (L; see Figure 3).  The 

task is divided into a series of blocks such that half of the 

trials within a given block are presented every block.  In 

this way, participants’ reaction times progressively 

decrease as they implicitly learn the spatial configuration 

of distractors.  Contextual cueing effects are often 

referred to in the broader context of biasing perceptual 

processing mechanisms in favor of perceiving more likely 

situations.  For instance, objects (e.g., a traffic light) may 

be located and perceived more quickly in situations that 

resemble their natural state (e.g., a street corner) [28]. 

 

 

Fig. 3 Sample display from the contextual cueing task. 

 

The learning that takes place during the contextual 

cueing task is implicit (subjects cannot verbally report 

whether they had previously seen a given display or not 

above chance levels [29]), long term (learning effects 

persist for at least a week [30]), and robust, which makes 

it an ideal task to study the neural plasticity of 

participants.  Following our primary hypothesis, we 

expect participants who exhibit a lower IT to demonstrate 

greater reaction time improvements as a result of learning 

the visual context of the target items. 

3.1 Method 

3.1.1 Participants and Apparatus. All 36 participants 

that completed the IT task also completed the contextual 
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cueing task.  The apparatus used during the IT task was 

also used for the contextual cueing task. 

 

3.1.2 Materials. In total, 252 displays were generated 

prior to testing participants.  These displays included 12 

repeated (“old”) displays to be presented in every block of 

trials and 20 sets of 12 new displays which were to be 

presented exactly once during the experiment.  Each 

display contained a single target item and four distractor 

items presented on a white background.  Distractor and 

target items subtended a visual angle of 2.2° in both width 

and height and were separated by at least 8.3°.  Distractor 

items contained a small offset of 0.3° at the junction of 

the horizontal and vertical lines to produce a more 

difficult search.  Targets and distractors could assume one 

of four potential orientations, which were balanced across 

each block of trials. 

 

3.1.3 Procedure. Participants completed twenty blocks of 

trials during the contextual cueing task.  Each block was 

composed of twenty-four trials; twelve trials contained an 

old display, and twelve trials contained a new display.  

The order of old and new trials was randomized before 

the start of each block.  Participants were instructed to 

find the target in each trial as quickly and accurately as 

possible and to report its orientation by pressing one of 

four arrow keys on a standard keyboard.  If participants 

did not respond within ten seconds, the trial resulted in a 

timeout and was counted as an incorrect response.  

Following a response or timeout, a sound was played to 

indicate the result of the trial. 

3.2 Results & Discussion 

Accuracy during the contextual cueing task was very 

high at 98% ± 2%.  Trials that were responded to 

incorrectly or ended in a timeout were not included in the 

analysis of reaction time measures.  In an effort to remove 

noise, every two blocks of trials were grouped together to 

form an epoch, as has been done previously [31].  Figure 

4 illustrates the average reaction times in old and new 

trials for each epoch.  The average reaction time for all 

trials during the first epoch was 1921 ± 706 ms, and the 

average reaction time during the last epoch was 1598 ± 

354 ms.  Contextual cueing effects are calculated as the 

difference between old and new trials in the final epoch.  

During the final epoch of the task, the average reaction 

time for old trials was 1512 ± 334 ms, and the average 

reaction time for new trials was 1676 ± 393 ms.  Thus, the 

average improvement in reaction time due to contextual 

cueing was 163 ± 155 ms, which is on par with previous 

reports [e.g., 29,31The average response times in old and 

new trials during the final epoch were significantly 

different, t(35) = 6.30, p < 0.001.  In an attempt to extract 

a maximum effect of contextual cueing, the greatest 

difference between old and new trials for a single epoch 

was calculated, which we will refer to as epoch-best.  The 

average value for epoch-best was 371 ± 160 ms. 

 
Fig. 4 Average reaction times of old and new trials in each 

epoch of the contextual cueing task. 

4. IOWA GAMBLING TASK 

Any serious discussion regarding higher-cognitive 

functioning must include some aspect of decision making.  

What are the factors that influence our decision making 

process?  What are the  basic  processes  that  allow  us  to 

choose one option over another?  Given the importance of 

decision making in basic survival, it is not surprising that 

much effort has been put forward by the scientific 

community towards answering questions such as these.  

To this end, a plethora of experimental tasks have been 

created to study the individual aspects of decision 

making; one such task is the Iowa Gambling Task (IGT).  

IGT was created by Bechara et al. [32] to study emotional 

effects in decision making; however, other researchers 

have noted that IGT can also be used to study decision 

making in general [e.g., 33].  In IGT, participants 

repeatedly select cards from four decks; two decks will 

result in long-term gains, while the other two will result in 

long term losses, even though single pulls may not always 

reflect this pattern. 

IGT was largely chosen for this study because of the 

depth of knowledge regarding reinforcement learning and 

the governing neural structures; see Dayan & Balleine 

[34] for a review.  As with the previous task, we expect 

lower-IT participants to learn the risks and rewards 

associated with each deck more quickly and, as a 

consequence, to select cards from advantageous decks 

more often; ultimately resulting in more money earned 

during the task.  Assuming the hypothesis holds true, it 

may seem reasonable to explain low-IT participants’ 

performances as a result of their greater intellectual 

ability.  However, previous studies involving IGT suggest 

that participants begin learning the risks and rewards of 

each deck prior to any conscious realization [35].  

Bechara et al. [35] measured skin conductance as 

participants completed the task and found that normal 
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participants generated anticipatory skin conductance 

when contemplating a risky decision prior to conscious 

realization of the risk involved.  Therefore, it seems 

reasonable to consider IGT a measure of neural plasticity 

rather than a measure of participants’ ability to develop 

overt strategies [35]. 

4.1 Method 

4.1.1 Participants and Apparatus. All 36 participants 

that completed the IT task also completed the contextual 

cueing task.  The apparatus used during the IT task and 

contextual cueing task also served as the apparatus for 

IGT with one small exception, the software used to test 

participants on IGT was created by Psychological 

Assessment Resources, Inc. 

 

4.1.2 Materials. Four illustrated decks of cards, lined up 

horizontally, were presented on a green background, 

above which, participants’ current money earned or debt 

incurred was presented; the decks were labeled A, B, C 

and D.  Decks A and B are considered losing decks, as 

their repeated choice will lead to long-term losses; decks 

C and D, on the other hand, are considered winning 

decks, as their repeated choice will lead to long-term 

gains. 

A single click of a standard mouse was used by 

participants to indicate from which deck they wished to 

choose.  Following a participant’s choice of a deck, a red 

card was presented for X ms over the chosen deck.  While 

the red card was being presented, the monetary result of 

the choice was presented below the card in black (gain) or 

red text (loss). 

 

4.1.3 Procedure. Participants were asked to pick 100 

cards from the four decks in any manner they deemed 

most appropriate to acquire the largest gains.  Participants 

were given a $2000 loan in play money that would need 

to be paid back at the end of the task.  Regardless of how 

participants performed, no real money was exchanged 

during the task.  Prior to participants’ selection, the 

message, “Pick a Card” was displayed to participants, and 

following their selection, the red card and monetary result 

were presented, which was then followed by the start of 

the next trial. 

4.2 Results & Discussion 

Participants had some trouble avoiding the large 

losses hidden in decks A and B, as the average amount of 

money acquired at the end of the task was -$722 ± $1289, 

which included repayment of the $2000 loan.  To 

facilitate the analysis of participant learning, participants’ 

selections were broken up into a series of five blocks with 

twenty selections per block.  Figure 5 illustrates the 

proportion of participant selections per block that were 

from advantageous or disadvantageous decks.  During the  

 
Fig. 5 Average percentage of card selections from 

advantageous and disadvantageous decks. 

 

first block, participants were more likely to choose from 

disadvantageous decks, equaling 58 ± 16% of their 

selections, than advantageous decks; however, by the 

second block of trials, participants were more likely to 

choose from advantageous decks, equaling 55 ± 17% of 

their selections.  Learning increased, albeit to a lesser 

degree, as the task continued; in the last block, 

participants selected from advantageous decks 60 ± 22% 

of the time.  A one-way Analysis of Variance (ANOVA) 

revealed a significant main effect for block number F(4) = 

4.99, p < 0.005, and the only significant difference in the 

proportion of deck selections between two sequential 

blocks of trials occurred amid the first and second block, 

t(35) = 2.97, p < 0.005; all other ps > 0.10.  Two neural 

plasticity measures were identified for IGT, the 

proportion of selections from advantageous decks during 

the final block of the task, and the difference between the 

proportion of selections from advantageous decks during 

the first and last blocks, which was 19 ± 32%. 

5. RELATIONSHIP ANALYSES 

A bivariate, two-tailed correlation was performed to 

test the ability of IT to predict the various measures of 

neural plasticity that were identified in the contextual 

cueing task and Iowa Gambling Task.  To determine if a 

ranked correlation was more appropriate, a Shapiro-Wilk 

test for normality was conducted, which revealed that IT 

does represent a normal distribution (df = 30, statistic = 

0.94, p > 0.05); therefore, Pearson’s correlation measure r 

will be used.  See Table 1 for a summary of the 

relationships between IT and the measures of neural 

plasticity. 
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5.1 Contextual Cueing 

Evidence for a significant relationship was found 

between IT and one of the two neural plasticity  measures  
Table 1 Correlation (r) between IT and neural plasticity 

measures. * = p < 0.01, ** = p < 0.001 

measure r (p) 

cc-learning 0.10 (0.62) 

cc-best 0.54 (0.00)* 

igt-last -0.60 (0.00)** 

igt-learning -0.47 (0.01)* 

 

identified for the contextual cueing task.  The first 

measure identified for the contextual cueing task was a 

measure of reaction time differences between old and new 

trials during the final epoch.  This measure represents 

participants’ spatial learning of old display configurations 

(cc-learning), which did not correlate with IT, r = 0.10, p 

= 0.62.  To remove fatigue-related effects, the maximum 

difference between reaction times during old and new 

trials in a single epoch was computed (cc-best), which 

was found to correlate significantly with IT, r = 0.54, p < 

0.005.  Unexpectedly, the significant relationship between 

IT and cc-best is opposite of that predicted by the 

hypothesis placed forward in the present study, which will 

be discussed in detail below.  Additionally, significant 

correlations between IT and the reaction times from both 

the first and last epoch were also found, r = 0.59, p < 

0.005, and r = 0.62, p < 0.001, respectively.  Therefore, 

even though high-IT participants were able to learn better 

during the contextual cueing task, low-IT participants still 

demonstrated significantly shorter reaction times.  The 

finding that low-IT participants are faster at performing 

the contextual cueing task was expected, as significant 

correlations between IT and various reaction time 

measures during other visual search tasks have been 

found [18]. 

5.2 Iowa Gambling Task 

Two measures of neural plasticity were identified for 

IGT: the difference between the proportion of 

advantageous selections made during the first and last 

blocks of trials (igt-learning), and the proportion of 

selections made from advantageous decks during the final 

block of trials (igt-last).  A significant correlation was 

found between IT and igt-learning, r = -0.47, p < 0.01, 

and igt-last, r = -0.60, p < 0.001.  Unlike the contextual 

cueing neural plasticity measures, the neural plasticity 

measures from IGT do demonstrate the hypothesized 

relationship. 

 

5.3 Discussion 

The results of the relationship analyses between IT 

and the various neural plasticity measures paint a 

somewhat less-than-clear portrait.  Both learning tasks 

demonstrated a significant correlation between IT and the 

measures of neural plasticity.  However, individual 

analyses of these two tasks revealed significant 

relationships in opposing directions.  In the analysis of the 

contextual cueing results, it was found that participants 

who were less adept at performing the IT task (i.e., those 

with slower processing speeds) showed significantly 

larger improvements as a result of contextual cueing 

effects.  On the other hand, the results of the IGT analysis 

demonstrated the opposite relationship between IT and 

the task’s neural plasticity measures.  These results 

suggest that the hypothesis put forward by this study is 

incorrect, at least at a general level.  Alternatively, it 

could be that the hypothesis does not take into account all 

factors related to the learning tasks presented.  This 

possibility is discussed below. 

Previous studies involving contextual cueing have 

noted a very interesting effect similar to the one found in 

the present study.  It has been shown that participants 

with dyslexia actually demonstrate higher learning of the 

spatial relationships in repeated (old) displays [36].  This 

remarkable result has been explained in the context of 

dyslexic participants employing a more distributed 

attentional landscape [37].  Is it possible that the effect 

observed in the present study is analogous to the one 

involving dyslexic participants?  Interestingly, previous 

hypotheses regarding IT have considered that IT may 

provide an index of a person’s ability to orient attention 

[38].  Furthermore, Scheres et al. [39] found reduced 

striatal activation –striatal activations have been 

demonstrated to correlate with performance in 

reinforcement learning tasks similar to IGT [40]– in 

adolescents with ADHD during reward anticipation.  

Therefore, it appears that participants’ ability to 

effectively direct their attention to relevant stimuli is a 

crucial aspect of the reinforcement learning that takes 

place in tasks such as IGT.  Taken together, these data 

concerning the tasks involved suggest that the focus of 

attention may have a critical role in establishing the 

neural mechanisms underlying the learning that takes 

place. 

6. Conclusion 

In the present study, we presented a hypothesis 

regarding IT which ascribes the neurophsyiological 

source of differences in IT to differences in the 

computational efficiency of participants’ basic visual 

processing areas as a result of having more ‘plastic’ 

brains.  We then tested this hypothesis by relating 
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participants’ ITs to various measures of neural plasticity 

identified during a spatial learning task and a 

reinforcement learning task.  Both tasks demonstrated a 

significant relationship between IT and the participants’ 

neural plasticity; however, these relationships were found 

to be in opposing directions.  A subsequent comparison of 

previous studies involving spatial learning and 

reinforcement learning revealed distinct deficits in 

participants with opposing disorders.  Participants with 

problems focusing attention (i.e., participants with 

dyslexia) have been shown to learn better during 

contextual cueing tasks whereas participants with similar 

problems focusing attention (i.e., participants with 

ADHD) have been shown to learn worse during 

reinforcement learning tasks. 

For these reasons, we modify our initial hypothesis 

by including a significant role of attention; that is, we 

propose that participants with a low IT do possess greater 

neural plasticity, except this neural plasticity relies 

critically on the attentional modulation of the actual 

neural pathways where the learning takes place.  

Interestingly, this new hypothesis is very similar to a 

hypothesis that was tested briefly in the later part of the 

20th century.  This hypothesis involved a measure known 

as neural adaptability [41] that was expressed as smaller 

evoked potentials to stimuli that were learned through 

previous experience to be non-relevant, and larger evoked 

potentials to novel stimuli.  This measure was 

subsequently shown to correlate significantly with 

measures of intelligence.  Future studies will be directed 

towards investigating the role of attention in relating IT to 

participants’ ability to learn during various tasks.  

Additional studies will also be performed to determine if 

a relationship exists between the theories regarding neural 

adaptability and IT. 
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