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Abstract. Spell checkers are one of the most widely recognized and heavily 

employed features of word processing applications in existence today.  This 

remains true despite the many problems inherent in the spell checking methods 

employed by all modern spell checkers.  In this paper we present a proof-of-

concept spell checking system that is able to intrinsically avoid many of these 

problems.  In particular, it is the actual corrections performed by the typist that 

provides the basis for error detection.  These corrections are used to train a 

feed-forward neural network so that if the same error is remade, the network 

can flag the offending word as a possible error.  Since these corrections are the 

observations of a single typist’s behavior, a spell checker employing this system 

is essentially specific to the typist that made the corrections.  A discussion of 

the benefits and deficits of the system is presented with the conclusion that the 

system is most effective as a supplement to current spell checking methods. 
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1 Introduction 

Since its introduction into the PC in the 1980’s, the spell checker has pervaded just 

about every level of text-editing provided by modern PCs.  As it is, nearly all email 

and word processing programs in existence today, including web-based programs 

such as those championed by Google, provide some form of spell checking.  

Additionally, many blogging and social networking sites have included native support 

for spell checking via online interfaces, and since version 2.0, spell checking is a 

standard feature in the web browser Firefox.  In fact, the spell checker is one of the 

most widely recognized program features in existence today.  Despite its 

pervasiveness though, the spell checker’s mechanisms are poorly understood and 

appreciated even less. 

In its nascent period, the spell checker’s primary functionality was to verify that no 

misspelled words were present in a block of text.  This was usually accomplished by 

comparing words in the text against an internal list of acceptable words, commonly 

referred to as the dictionary of the spell checker; if a present word did not match any 

of the acceptable words, it was declared misspelled.  One major deficiency with this 

method is that it allowed for little or no ability to suggest possible correct-spellings 

for the misspelled word.  In an attempt to circumvent this, algorithms such as the 

Damerau-Levenshtein distance, which is defined as the number of operations that 
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must be performed to transform one word into another, combined with hashing 

techniques have been employed.  Today’s spell checkers are much more sophisticated 

than their earlier cousins and are now able to overcome problems such as identifying 

simple grammatical errors and most context-sensitive spelling errors. 

Even with the heaps of research performed into developing modern spell checkers, 

e.g. [1], [2], [3], [4], many problems still exist with current technologies, and while 

nobody expects a spell checker to be flawless, it is apparent that much work remains.  

A list of common limitations associated with current spell checkers includes, but is 

not limited to: inter-language problems, context-sensitive problems, dictionary size 

problems, and incorrectly flagging acronyms and names as misspelled.  In order to 

better identify the root-causes of these spell checker problems, a couple of these 

problems are detailed in the following sections. 

Context-sensitive problems in the spell checker are most obvious when a 

homonym of an intended word is used (e.g. there instead of their), but not flagged as 

an error by the spell checker.  While this does not technically constitute a spelling 

error, since both words are present in the dictionary, if the context in which the word 

is used is taken into account, a homonym does indeed constitute a spelling error. 

Dictionary size problems stem from the striking difference in behavior that a spell 

checker exhibits simply by the selection of one dictionary size over another.  

Although it may seem logical that a dictionary should be as complete as possible, 

most modern spell checkers limit the size of their dictionary to increase their 

efficiency.  For example, while the word holt, which describes the den of a fox or 

other animal in tree roots or a river bank, is a valid word, it may be found through a 

frequency evaluation that its presence in a block of text is more likely a misspelling of 

the words hole or hold.  Therefore, its inclusion into the dictionary of a spell checker 

effectively decreases its efficiency to detect likely misspellings. 

In addition to the problems listed above, other problems facing spell checkers also 

exist, and by now two things should be apparent.  One; spell checkers are far from 

perfect, and two; creating a spell checker that can account for all problems is non-

trivial.  Possible solutions to each of the problems listed above have been proposed, 

and when merited, implemented.  Context-sensitive problems in particular have been 

studied extensively, e.g. [1] and [3], and recently the Winnow algorithm has been 

used to achieve a high degree of accuracy at detecting context-sensitive errors [1].  

However, it is unlikely that an amalgamation of algorithms that solve individual 

problems will ever be capable of fixing all the problems associated with current spell 

checkers.  Instead, it is likely that a new approach to spell checking will need to be 

taken to solve the host of problems that exist. 

In this paper we suggest a new system for detecting misspelled words, which we 

refer to as the PENN system (Personalized Error correction using Neural Networks).  

In particular, we use a neural network that is trained using observations of the specific 

corrections that a typist makes.  Corrections that are made enough times are 

characterized as possible errors, and the word used to replace the errant word is then 

defined as the corrected-word associated with the specific error.  If the typist makes 

the same error again, the program subtly suggests the corrected-word that is 

associated with the error.  Since the actual behavior of the typist is used to determine 

potential errors, the problems associated with traditional spell checking methods do 

not apply.  In the following section an overview of the procedure for this system is 
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given, which is then followed by a theoretical discussion of the specific benefits and 

deficits that are associated with this approach. 

2 PENN System Overview 

Since the behavior of the typist is used to determine potential errors, a means must be 

in place to determine the intention of the typist at any given moment.  In the present 

approach, we use the simplistic state machine shown in Fig. 1 to establish the intent of 

the typist.   

  

Fig. 1.  The finite state machine used to determine when a correction is made.  Letter and other 

indicate that a letter or something other than a letter was typed, and \b letter and \b other 

indicate a backspace was performed and that the character deleted was or was not a letter 

respectively. 

As indicated, the typist starts in the TYPE mode, and will remain in this mode until an 

actual letter is deleted, which will transition the typist from TYPE mode to EDIT 

mode.  EDIT mode indicates that a correction is being performed by the typist.  If, 

while in EDIT mode, the typist deletes something other than a letter, no correction is 

made and the typist transitions back to TYPE mode; this indicates that the typist has 

deleted a full word, which does not constitute a correction in which the system is 

interested.  If the typist types a letter or deletes a letter while in EDIT mode, no 

transition will be made and the user will remain in EDIT mode with the updated 

word.  However, if the typist types something other than a letter, an indication is 

made to the system that the typist has performed a correction, the initial word is 

stored as the erroneous word, the new word is stored as the corrected-word, and 

finally, the typist is transitioned back to TYPE mode.  This simple state machine is 

sufficient to control the basic spell checking system that we demonstrate in this paper, 

but a more sophisticated system would need a correspondingly more sophisticated 

state machine.  

The state machine in Fig. 1 functionally defines the corrections that are made while 

a typist is typing, and once the erroneous word and corrected-word have been defined, 

both can fed both into the neural network of the spell checking system.  Specifically, 
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we use a simple feed-forward neural network that is progressively trained using the 

erroneous word as input for the network and the corrected-word as the target of the 

network.  To facilitate the input and output of the network, the erroneous and 

corrected words are transformed into a 20 x 27 binary array as shown in Fig. 2. 

 

Fig. 2. The transformed erroneous word (left), hos, and corrected-word (right), hot, for use in 

the neural network.  Filled circles and unfilled circles represent the values 1 and 0 respectively 

for the network, and asterisks represent null letters. 

The actual choice for the neural network that is used is rather arbitrary as long as it 

fulfills the following criteria. 

1. The network is able to associate an erroneous-word with a corrected-word (referred 

to as a correction-pair) with a consistent, minimal amount of training. 

2. Previously learned correction-pairs are unaltered by the subsequent training of new 

correction-pairs that do not share the same erroneous word. 

3. Correction-pairs with the same erroneous word can compete for activation based 

upon the number of times each correction has been made. 

3 Evaluation of the PENN System 

The use of a neural network trained from the observed behavior of the typist marks a 

large deviation in methodology to spell checking from traditional methods and its 

characteristics may not be readily apparent.  Therefore, some of the more stark 

changes are listed below. 

1. Initially, no words will be flagged as misspelled. 

2. Words that are misspelled and corrected enough times are characterized as possible 

errors in the system. 

3. Different words that are misspelled in the same way (e.g. if hit and sit are both 

commonly misspelled as bit) will compete for the suggested position. 
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4. Misspelled words need not even be words.  Acronyms for example can be flagged 

as possible errors if they are corrected enough times (e.g. USX to USA). 

5. Misspellings can be words themselves (e.g. there to their). 

6. Misspellings are specific to the person that made them.  This is a unique benefit of 

the system since many of thee errors people make are not made by most others 

(e.g. adding an extra ‘e’ to “the”).  It is therefore important that programs 

employing this system have user profiles to ensure that trained neural networks are 

used only by those that they were trained from.  Fortunately, this functionality 

already exists in most web-based software that employs spell checkers. 

By using the typists’ actual behavior, the current method is able to circumvent many 

of the shortcomings associated with the traditional methods of spell checking.  

Specifically, those detailed in section 1, context-sensitive problems and dictionary 

size problems, can both be overcome for the most part by using this system.  Still, the 

example system is far from perfect and even faces new problems that are not present 

with traditional methods.  Some of the problems associated with the example system 

as well as possible solutions are given below. 

1. Initially, the personalized method misses all misspelled words.  This problem can 

be addressed by using the personalized method as a supplement to traditional spell 

checking methods. 

2. Corrections made to misspellings that are also words (e.g. there to their) may 

introduce more false-negatives to flagging results.  This could be handled by 

devising a system to include contextual information about the correction as 

additional input to the neural network, which would provide true context-sensitive 

flagging. 
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