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Abstract

People with dyslexia, who ordinarily struggle to read, sometimes remark that reading is easier when e-readers are used.
Here, we used eye tracking to observe high school students with dyslexia as they read using these devices. Among the
factors investigated, we found that reading using a small device resulted in substantial benefits, improving reading speeds
by 27%, reducing the number of fixations by 11%, and importantly, reducing the number of regressive saccades by more
than a factor of 2, with no cost to comprehension. Given that an expected trade-off between horizontal and vertical
regression was not observed when line lengths were altered, we speculate that these effects occur because sluggish
attention spreads perception to the left as the gaze shifts during reading. Short lines eliminate crowded text to the left,
reducing regression. The effects of attention modulation by the hand, and of increased letter spacing to reduce crowding,
were also found to modulate the oculomotor dynamics in reading, but whether these factors resulted in benefits or costs
depended on characteristics, such as visual attention span, that varied within our sample.
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Introduction

The widespread adoption of e-readers is driving a fast-moving

evolution in the social conventions for reading, opening the door

to the possibility that new methods for reading may begin to take

hold. Given that an estimated 5% to 17% of all people struggle

with the system of reading currently in place [1], it is reasonable to

ask whether this evolution in reading can lead to new methods that

are better matched to the atypical neurology of those with dyslexia

and thus might ameliorate its detrimental effects.

Anecdotally, people with dyslexia sometimes remark that

reading on e-readers seems easier, and researchers have long

suspected that altered treatments of text may produce beneficial

effects in those who struggle to read. Among measures proposed in

the past are alterations to fonts [2,3], rearrangements in the

physical formatting of the text [4], and masking to isolate attention

[5]. While, in some cases, benefits have been observed, these

effects have generally been small and, occasionally, controversial

and difficult to reproduce.

This state of research encourages the investigations undertaken

here to ascertain whether alternate methods for reading, made

practical by use of e-readers, can address known impairments in

dyslexia, such as poor oculomotor control [6], and deficits in

visuospatial attention [7]. In this paper, we use eye tracking to

observe high school students with dyslexia as they read using

popular handheld portable reading devices. Our experiment varies

a number of factors that differentiate such devices from traditional

presentations of text. It investigates the effects of the device being

held in the hand, of differing linewidths (which result from devices

of different sizes), and of the alteration of inter-letter spacing.

Effects of the hand are interesting because mobile reading

devices are typically used while held in the hand, and attentional

processes are biased by proximity to the hand [8], shielding visual

perception from interference by attention [9] and enhancing

sensitivity to detail [10]. Dyslexia is associated with numerous

deficits in visual attention [7,11–13], and therefore it is an

interesting question whether holding text in the hand influences

reading in people with dyslexia. Our experiment therefore varies

whether reading is performed while the reading device is held near

the hands, or not (see Fig. 1).

Another question we investigate pertains to the small physical

size of many mobile reading devices (e.g., smart phones). It has

been suggested that the small reading window used in such devices

may facilitate reading in dyslexia by limiting the span of attention

required for reading [4]. To investigate this, participants with

dyslexia read using either an Apple iPad (PAD condition) or a

smaller Apple iPod Touch (POD condition), keeping the angular

dimensions of the characters and the spacing of the lines identical

in both conditions (see Fig. 2).

Finally, a third variable investigates the effects of letter spacing.

An earlier study found that increasing inter-letter spacing

facilitates reading in children with dyslexia [14]. Increased letter

spacing reduces neurological interactions that occur between

letters to impede recognition, an effect known as crowding, which

has been observed to be heightened in dyslexia [15,16]. Here,

NORMAL letter-spacing is compared with SPACED, wherein
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letter-spacing is increased (see Fig. 3). To account for an important

confound of line spacing in the experiments of [14], in our

experiments line spacing is held constant.

Methods

Ethics Statement
This study was approved by the Committee on the Use of

Human Subjects in Research at Harvard University. In accor-

dance with the approved research protocol, volunteers who were

not minors provided written informed consent, while those who

were minors provided written assent, with additional written

consent obtained from their parents or guardians.

Research Design
The goal of our study was to investigate whether and how

differences in e-reader technologies and set-up affect reading in

dyslexia. We used a within-subjects design to focus analysis on

effects resulting from manipulations of the device, an accepted

technique used in this field (e.g., [17]). The reading device (PAD/

POD), inter-letter spacing (NORMAL/SPACED), and involve-

ment of the hands (HAND/NO-HAND) are the conditions varied

experimentally in a balanced (26262) design of the ‘‘repeated

measures’’ type, in which all participants were measured in all

conditions, so that participants served as their own controls.

Participants
Participants were 27 (13 M/14 F) students with lifelong histories

of reading struggles. These were high school students enrolled at

Landmark High School, in Prides Crossing, MA (USA), a school

exclusively for students with language disabilities, except for one

participant (8th grade) who was from another school. All students

had vision that was normal, or corrected to normal, and no

histories of neurological disorders. The current literacy and

phonological awareness profile of each participants was measured

prior to the experiment using the Test of Word Reading Efficiency

(TOWRE; [18]), the Gates-MacGinitie Reading Tests [19] and

three subtests of the Comprehensive Test of Phonological

Processing (CTOPP; [20]). Participants’ non-verbal ability was

measured using the Block Design subtest of the Wechsler

Abbreviated Scale of Intelligence; WASI [21]. The observed

characteristics of the group are summarized in Table 1.

Stimuli
Participants read material excerpted from an age-appropriate

non-fiction book on biomedical science [22]. Passages consisted of

208 words and were randomly selected from the book, avoiding

segments containing unusual formatting or extensive dialogue.

Each passage began at the start of a sentence, and ended after 208

words, appending the word ‘‘END.’’ Sixteen such passages were

selected, in addition to one reserved for practice. All text was

formatted using a 32-pt Georgia font, with a line spacing that was

Figure 1. Reading on the Apple iPod Touch using the hands. The device is suspended from a stable mount in front of the participant, while
eye movements are observed using an eye tracking device (partially visible toward the bottom of the photo). In this condition, the participant holds
the device. In the NO-HAND condition, the participant’s hands are placed in his or her lap. The PAD condition is similar, except that the iPod is
replaced with the larger format Apple iPad. (Photo: Randy H. Goodman).
doi:10.1371/journal.pone.0071161.g001
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increased by a factor of 1.7 compared with normal spacing.

Margins were left justified and right ragged, and the width of the

margin was chosen to avoid the possibility that words would

become hyphenated. Two versions of the text (NORMAL/

SPACED) were prepared for each device (PAD/POD). Text for

the POD condition was packed to accommodate the screen

dimensions of the Apple iPod Touch in portrait mode

(5 cm67.5 cm), while text for the PAD condition was dimensioned

to fit the Apple iPad in landscape mode (19.7 cm614.8 cm),

keeping the angular dimensions of the characters and their spacing

identical in both conditions (see Fig. 2). Using this formatting, a

208-word passage could be displayed on a single PAD page.

However, owing to the smaller size of the iPod screen, in order to

keep the angular dimensions of the characters identical in the PAD

and POD conditions, 12 POD pages were required to display the

same content as one PAD page. Effects of crowding were varied

(NORMAL/SPACED) by increasing character spacing by 29% in

the SPACED condition. Line breaks were manually inserted to

ensure that the number of words presented in each line (here

defined as ‘‘linewidth’’) remained identical in the two spacing

conditions (see Fig. 3).

Apparatus
Reading material prepared for the POD condition was

preloaded on an unmodified third generation Apple iPod Touch.

The device had a screen resolution of 6406960 pixels at 128 pixels

per cm. Passages for the PAD condition were presented on an

Apple iPad 2, at a resolution of 10246768 pixels, at 52 pixels per

cm. In both cases, the Apple iBook app was used to display the

text, stored on the device in pdf format, to preserve font and

spacing. The screens were adjusted for a black level of 0.9 cd/m2

and a white level of 66 cd/m2 for the POD condition, and 0.1 cd/

m2 and 70 cd/m2, respectively, for the PAD condition. Ambient

room luminosity was adjusted between 1 Lux and 280 Lux,

Figure 2. PAD and POD conditions compared. Participants read 208 words per trial, two trials per condition, in each of eight unique
combinations of conditions. In a single trial all 208 words are displayed on a single page in the PAD condition, while in the POD condition (inset
overlaid) 12 pages are required to display the same number of words. The figure superimposes gaze-tracking data sampled from the same
participant. Blue dots indicate fixations. Leftward regressions (LEFT) are marked in red, while symbols in green are regressions directed upwards (UP).
Note that the density of horizontal regressions is higher in the PAD condition compared with POD. This individual makes numerous leftward
regressions –almost as if automatic– in the PAD condition. However, in the POD condition, the density of leftward regressions is reduced. Importantly,
the figure illustrates that this reduction in horizontal regressions does not occur at the expense of regressions upwards.
doi:10.1371/journal.pone.0071161.g002
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depending on the needs of the participant, to maintain a pupil size

optimal for eye tracking.

The iPad or iPod was suspended in front of a 23-inch Apple

Cinema (493 mm6308 mm) flat-screen LCD monitor that served

as a calibration screen. This was placed at a distance of 60 cm

from the participants, set to a white level luminance of 66 cd/m2.

The iPad or iPod was mounted in front of this calibration screen at

a distance of 35 cm from the participant, positioned so as not to

obscure the eye tracking camera or its illuminator (see Fig. 1). The

device was held by an adjustable mount that facilitated removal for

calibration and for swapping of devices to between the PAD and

POD conditions.

Eye movement data were acquired and recorded via a desk

mounted Eye-Link 1000 system (SR-Research, Ontario, Canada)

running at a sampling rate of 1000 Hz. Calibration and data

acquisition were controlled by custom software. Because the iPad

and iPod could only be controlled via their touchscreens, the

displays were manually controlled by a technician who interacted

with the device using a stylus. During data acquisition, a page-turn

target (black square) was continuously visible on the calibration

screen behind the iPad or iPod, positioned to appear just above the

top edge of the reading device. When participants directed their

gaze to this target, this action was interpreted in real time by the

data acquisition software to trigger an audible signal that directed

the technician to quickly update the iPad or iPod display.

During reading, participants sat in a chair, and a chin rest was

used to stabilize the head. The position of the participants’ hands

was controlled as a condition of the experiment (HAND/NO-

HAND). In the NO-HAND condition participants held a tennis

ball with both hands placed in their laps. In the HAND condition

participants placed each hand on either side of the iPod/iPad

device (see Fig. 1). Elbow supports helped prevent blockage of the

eye-tracking camera located beneath the reading device.

Procedures
Device (PAD/POD), crowding (NORMAL/SPACED), and

hand-position (HAND/NO-HAND) were varied in a (26262)

design that yielded eight possible unique combinations of

conditions. Each of the eight conditions involved a practice

followed by two reading trials, each presenting a different 208-

word passage. To control for bias due to order, these combinations

were distributed among participants using a pair of 868 mutually

orthogonal Latin squares [23], one for passages 1–8, the other for

passages 9–16. This arrangement was repeated for each group of

eight participants. In total, all participants read all of the same 16

reading passages, but the order of these passages and their

assignments to conditions varied according to the mutually

orthogonal Latin square design.

Prior to reading, whenever a device configuration was changed,

a standard (typically, nine-point) calibration was performed.

Reading trials commenced when the participant issued a signal

to the technician (by directing their gaze to the page-turn target) to

advance the page on the iPod or iPad. When participants reached

the end of the displayed text, they again directed their gaze to the

page-turn target, and the technician advanced the page. In the

POD condition, reading the entire 208-word passage required 12

such page turns, while the PAD condition required only one.

Participants read all text silently. When reading of the entire 208-

word passage was completed, participants were asked to recall the

content of the passage read, and their description was rated for

fidelity (FIDELITY), coding for the number of substantive details

recalled using a four-point scale (0–3). A score of zero indicated the

participant was unable to recall any details, while a score of three

indicated three or more details were described.

Eye Motion Analysis
Standard software (EDF Converter; SR-Research, Ontario, CA)

was used to extract fixation parameters from the eye data. Custom

software written in Matlab (Mathworks, Natick, MA) was used to

fit the fixation positions to the distribution of words in the text for

each trial. Here, an objective algorithm scaled and rotated the XY

coordinates of eye fixation data to match the overall pattern of

words displayed in each trial. Upward directed eye movements off

the screen, toward the page-turn target, were used to estimate the

approximate times reading began and ended in each trial. The

algorithm then used this information to disambiguate data

corresponding to each of the 12 pages in the POD condition,

and the single page in the PAD condition. Once this was known,

Figure 3. NORMAL and SPACED conditions compared. Extra
wide letter spacing is used in the SPACED condition (B). Linewidth is
here defined as the number of words per line, and this is held constant
in each condition. Line spacing is also held fixed.
doi:10.1371/journal.pone.0071161.g003

Table 1. Descriptive statistics for participants’ demographic
and measurement information.

Variable Obs Mean Std Min Max

Grade 25 10.56 0.96 9 12

Gender (0 = male; 1 = female) 27 0.52 0.51 0 1

Age 25 17.12 1.05 15 19

Standardized Scores

Block Design 22 49.91 9.42 28 62

Elision 26 9.15 1.93 4 12

Memory for Digits 26 8.31 2.55 2 14

Rapid Letter Naming 26 6.37 2.13 2 10

Rapid Digit Naming 26 7.48 2.52 2 13

Sight Word Efficiency 26 78.04 11.16 54 100

Phoneme Decoding Efficiency 26 79.31 9.05 60 96

Degrees of Reading Power
Level*

25 59.2 12.69 34 77

Gates-MacGinitie
Reading Test**

27 546.33 22.49 500 592

*DRP supplied by school.
**G-M Level 10 reported.
doi:10.1371/journal.pone.0071161.t001
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the algorithm refined initial estimates for the start and end of

reading by identifying the time-stamps of gaze fixations landing

closest to the positions of the first and last words on the page.

Automated fit to the data was examined for each page. Cases

where the automatic algorithm failed to converge, or where the

eye tracker failed to hold lock on the gaze (for example when

participants inadvertently blocked the camera during reading),

were flagged and omitted from subsequent analysis. In some

instances, when it was clear that the fit failed for reasons easily

evident and corrected (for example, if the end of reading was lost

because participants forgot to signal a page turn, or if erratic eye

movements at the start of a page confused the algorithm), it was

possible to correct such errors by inspection and restore the

convergence of fit.

Given that it takes time for a subject to locate the first word on a

page and settle into a stable pattern of reading, the timestamp of

the initial fixation corresponding to the first word in the text

(whether or not corrected by inspection) was not assumed to be a

reliable measure for estimating speed of reading. Similarly, when

participants approached the end of a page, procedures required

them to engage in special actions (e.g., to gaze at the page-turn

target) that could potentially disrupt their reading. For this reason,

the automated estimates of when the last word is read were also

considered unreliable. To counteract such effects, we based the

measurements we report on parameters observed over a

‘‘trimmed’’ reading interval that ignores a fixed span of text at

the start and end of each page. To do this, the objective algorithm

matched gaze positions to the third word from the start and the

third word from the end of each POD page, and the 25th word

from the start and 25th word from the end for each PAD page, so

that reading measures were based on reading a total of 160 words

for each passage, rather than 208.

We observed eye motion statistics over the trimmed time

interval to compute fixation counts, fixation durations, and errors

in oculomotor efficiency (e.g., number of regressive saccades) and

distractibility (i.e., glances off-page). For reading speed, we

introduced a novel reading rate measure that performs a robust

linear regression on the y-coordinate of the gaze as a function of

time (see Fig. 4). This measure is robust against outliers in motion,

and results in a measure of reading rates that is likely more stable

and reliable than that computed from traditional time interval

measures. (See detailed description of variables below.)

Visual Attention Span (VAS)
Response to a global letter report task (sometimes referred to as

the ‘‘visual attention span’’) was measured using custom software

(iCue) on the iPod device, adapting procedures described in [24].

The participant held the iPod in the hand, at a comfortable

reading distance. The participant manually started each trial by

tapping the device touchscreen. This initiated a 1000 ms

presentation of a number (1–10) centrally-placed on the screen

that the participant read aloud (used to facilitate score-keeping).

Following this, a blank screen appeared for 1000 ms, and then a

centrally placed fixation marker, held for 1000 ms. Fixation was

followed by a second blank screen of 500 ms duration. A six-letter

global report task followed immediately, wherein 6 unique

characters, each separated by four spaces, were chosen with no

order constraint from among (B, P, T, F, L, M, D, S, R, H), and

displayed on screen for 200 ms using a 20 pt fixed-width Courier

font. The string of letters spanned 4 cm on the display. The letter

string presented in each trial was unique. Following the global

report stimulus, a blank screen appeared, at which point

participants reported any letters recalled, irrespective of order,

with no constraint on time. Following a practice session, 24 trials

were presented. The number of correctly identified letters was

totaled for each trial, and a mean was computed to create a score

for each participant (VAS).

Variables
This study tested the hypotheses that reading is facilitated when

(a) text is formatted in a narrow window (POD condition), (b)

letter-spacing is increased to reduce crowding (SPACED condi-

tion), and (c) text is placed in proximity to the hand (HAND

condition). Improved reading efficiency is taken to be indicated by

(i) higher reading speed, (ii) fewer fixations, (iii) fewer ineffective

eye movements (e.g., regressive saccades), or (iv) better reading

comprehension.

The measured slope of the regression line indicating the average

vertical angular velocity of the gaze in pixels per sec was re-

normalized to obtain a reading rate: It was multiplied by the

number of words covered in the vertical gaze span to construct a

novel robust measure of reading rate (RATE: words/min).

Fixation parameters observed include the number of fixations

recorded during the trimmed interval (FIX) and counts of the

number of irregular eye movements made during reading. These

included regressive saccades, indicating that the participant looked

back while reading (LEFT), eye movements made to lines above

(UP) or below (DN) the location of the expected next word, and

eye movements directed off the page (OUT), indicative of

distraction. These tracking error variables were summed to

compute an overall measure of tracking efficiency (TOT).

Two variables measured reading comprehension: post-test

assessments of reading fidelity as a dependent variable, and an

a-priori indicator of general reading power as a predictor variable.

Given that the sample of participants was drawn from a special

school that provides a strong focus on reading intervention, and

that many of these high school students were enrolled in this

school for a significant portion of their academic careers, it is not

surprising that more than 90% of the Fidelity responses were

scored at 3, indicating that students recalled the content with a

high degree of fidelity. (In fact, students typically described so

many details during interview, extra time spent on student

descriptions unexpectedly became a driving factor in scheduling

participants.) Because a ceiling effect skewed the response

distribution and created a highly non-normal shape, with the

bulk of the observations being at the extreme, we separated the

instances where comprehension essentially failed from those where

students read well, by recoding this variable as a low score (0–1),

and a high score (2–3), to produce the dichotomous reading

comprehension measure used in our analysis (FIDELITY: low/

high). In an effort to control for the participants’ general level of

reading comprehension, we used a-priori reading measures

supplied by the school (Degrees of Reading Power from the

Connecticut Mastery Test [25]) to construct a predictor variable

from a median split in these scores (DRP: high/low). Students with

a DRP score of 61 or higher were assigned to the ‘‘high reading’’

group; students with a DRP score below 61, the ‘‘low reading’’

group.

For technical reasons, not all eye-tracking trials resulted in valid

measurements. In some cases, especially in the HAND condition,

the participant’s arm would block the eye tracking camera, causing

dropouts in recordings, while in other instances pressure from the

hand dislodged the reading device. Other issues that influenced

the quality of the recording included cases where students

exhibited patterns of reading that were so erratic that the

automated algorithm used to match the text to the fixation

positions failed to reliably converge. The experimenters therefore

inspected each of the trials and rated its validity as good,

Short Lines Facilitate Dyslexia
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acceptable, or poor. The trials of the last category were omitted

from analysis. This meant a decrease in usable trials from 2654 to

2178 (a 17.9% omission rate), a decrease from 216 to 191

conditions (11.6%), and the loss of one of the 27 participants.

Results

Analysis
Our experimental design is of the ’’repeated measures’’ type, in

which all participants were measured in all conditions. This design

was statistically modeled by a 2-level hierarchical linear model

(HLM), with subject as the higher level. Our findings are

summarized in Tables 2 and 3. Estimates of the means for

significant main effects of Device are plotted in Fig. 5. The tables

present only main effects models. However, two hypotheses

involving interactions were also tested for each dependent

variable: (a) that added spacing makes reading more difficult

when linewidths are longer (‘‘Device*Crowding’’ interaction), and

(b) that highly compensated readers are less sensitive to effects of

crowding (‘‘Crowding*High Reading’’ interaction). None of the

interaction models testing these hypotheses yielded a significant

interaction. Hence they were omitted from the tables. (In Table 2,

‘‘better’’ indicates the direction advantageous for effective reading

performance.)

Variations within Sample
To investigate potential effects of certain varying characteristics

within our sample, we carried out supplementary analyses for four

dependent variables: FIX, LEFT, TOT, and RATE. The

additional independent variables were global report (VAS) (as

described earlier), sight word efficiency (SW), and phoneme

decoding efficiency (PD). Here, SW is the standard score derived

from the number of sight words correctly read in 45 seconds from

the TOWRE, and similarly PD is the standard score derived from

the number of nonwords correctly decoded in 45 seconds, also

from the TOWRE. These independent variables were entered in

HLMs with Device, Hand, and Crowding. As before, observations

flagged as faulty were deleted, leaving 25 participants in the

analysis. Table 4 shows the significant main and interaction effects

(with conditions) of these independent variables. Note that the

shown significance (p = 0.0406) for the HAND main effect in the

interaction model of TOT is merely a statistical artifact of the

interaction.

Hand. The hand condition (placing the hands near the device

or not) clearly made no difference in any of the models with one

important exception (see Table 4): we observe a significant

interaction of Hand*VAS. Fig. 6 shows the shape of this

interaction. For those with a high VAS score, TOT is higher in

the HAND condition than in the NO-HAND condition. For those

with low VAS scores, the opposite is the case.

Crowding. Significant main effects were observed for the

letter-spacing conditions. Surprisingly, the normal spacing of text

was favored over formats that reduce crowding in the majority of

tracking variables where significance was observed (RATE and

FIX). However, Table 4 shows a significant interaction of

VAS*Crowding for RATE. The shape of this interaction is such

that for those with high VAS scores, RATE is unaffected by the

increased letter spacing (Fig.7). On the other hand, those with low

VAS scores read faster under normal spacing, compared to the

SPACED conditions.

Prior experiments [14] showed that when children with dyslexia

(mean age 10.4 y) read aloud, they read more rapidly and with

fewer errors when letter-spacing was increased. Our data did not

show this expected benefit in RATE. And, while it is difficult to

extrapolate findings observed in young children under conditions

of reading aloud to results we report here, observed in high school

students under conditions of silent reading, we considered the

possibility that increased letter-spacing, rather than improving

oculomotor dynamics, improves the accuracy of word decoding.

To test this hypothesis, the dummy FIDELITY was entered as the

dependent variable into hierarchical logistic regressions. Table 5

shows a main effects model (left) and a model with the

‘‘Crowding*High Reading’’ interaction (right). Here, ‘‘better’’

indicates the direction advantageous for effective reading perfor-

mance. For ease of interpretation, the coefficients were exponen-

tiated so that they can be understood as odds ratios (OR). (For

Figure 4. Sample eye tracking data for POD SPACED HAND condition. Fixation positions are fit to text displayed on the iPod Touch (left
panel). The experiment counts the number of fixations (blue dots), regressions (red), and reading speed. Speed is determined by examining the
vertical component of the gaze, plotted as a function of time in the left panel. Data in an interval near the start and end of each page is ignored to
avoid boundary effects between pages, and a robust linear fit to this data (green) used to compute an instantaneous measure of reading rate.
doi:10.1371/journal.pone.0071161.g004
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example, the main effects model estimates the odds of achieving

reading fidelity to be about three times as high for the SPACED

condition as for the NORMAL condition.) We observed a

marginally significant main effect of device (POD being better).

Here, we suspect that the effect of device did not reach significance

because most readers read at high levels of FIDELITY, and the

underlying three-point scale used was too coarse to show a reliable

effect. A significant effect of spacing was observed (SPACED being

better), supporting the findings of [14]. In this instance, however,

the interaction between spacing and reading level was significant.

To understand the shape of the interaction, we converted the

coefficients into least-square means that indicated the students’

probability of achieving fidelity (see Fig. 8). The good readers had

no difficulty with either spaced or normal text: they almost always

Table 2. Results of hierarchical linear models: Primary oculomotor effects.

Dependent
Variable RATE FIX LEFT TOT UP DN OUT

Effect Coefficient
p-
value Coefficient

p-
value Coefficient

p-
value Coefficient

p-
value Coefficient

p-
value Coefficient

p-
value Coefficient

p-
value

Device 31.8033 ,.0001 227.4919 ,.0001 226.1534 ,.0001 221.8221 ,.0001 2.0392 0.0047 2.0219 ,.0001 0.15 0.316

Crowding 29.3233 0.0029 26.1471 ,.0001 20.03906 0.9794 20.4034 0.8172 0.4225 0.5214 20.9449 0.0144 0.1448 0.3328

Hand 1.4427 0.6135 6.8031 0.1992 1.9021 0.2213 1.8376 0.3037 0.2523 0.7041 20.3073 0.4012 0.2208 0.1465

High Reading 32.3351 0.0581 231.3949 0.2064 24.0965 0.373 23.1585 0.6638 0.559 0.8339 0.8534 0.3167 0.0187 0.9112

Dependent Variables. RATE: Reading speed in words/min (higher = better); FIX: Number of fixations (lower = better); LEFT: Number of regressive saccades
(lower = better); TOT: Total number of inefficient saccades (lower = better); UP: Number of gaze motions up (lower = better); DN: Number of gaze motions down
(lower = better); OUT: Number of gaze motions off-page (lower = better). Effects. Device (1 = POD, 0 = PAD); Crowding (1 = SPACED, 0 = NORMAL); Hand (1 = HAND,
0 = NO-HAND); High Reading (1 = yes, 0 = no).
doi:10.1371/journal.pone.0071161.t002

Table 3. Estimated means of oculomotor variables.

Dependent Variable Units Estimate Std. Err. Estimate Std. Err.

Device PAD POD

RATE wrds/min 117.79 8.0996 150.21 8.1231

FIX number 251.87 12.0138 224.24 12.0697

LEFT number 48.2701 2.6971 20.8142 2.718

TOT number 57.5589 3.6281 35.0237 3.6486

UP number 7.0379 1.2143 9.4516 1.2221

DN number 2.0294 0.4196 4.2225 0.425

OUT number 0.2268 0.1043 0.4193 0.107

Crowding NORMAL SPACED

RATE wrds/min 138.93 8.1044 129.08 8.1183

FIX number 224.41 12.026 251.7 12.0576

LEFT number 34.5929 2.7022 34.4914 2.713

TOT number 46.5263 3.6327 46.0564 3.644

UP number 8.0617 1.2161 8.4278 1.2203

DN number 3.5727 0.4211 2.6791 0.4234

OUT number 0.233 0.1054 0.4131 0.1059

Hand NO-HAND HAND

RATE wrds/min 132.65 8.1267 135.36 8.1004

FIX number 236.93 12.078 239.17 12.0161

LEFT number 34.3704 2.721 34.7139 2.6982

TOT number 46.1598 3.6516 46.4229 3.629

UP number 8.1284 1.2232 8.3611 1.2147

DN number 3.2493 0.4255 3.0026 0.42

OUT number 0.2492 0.1065 0.3969 0.1048

doi:10.1371/journal.pone.0071161.t003
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succeeded in either condition (98.8% SPACED, 99.0% NOR-

MAL). For the weaker readers, by contrast, spacing did make a

difference. Only in the spaced condition did they do almost as well

as the good readers (97.7%); in the normal condition, they did

worse (85.4%). This supports the hypothesis that the added

spacing, used to reduce the effects of crowding, acts to facilitate

word decoding–though this was apparent only among weak

readers.

Device. Considering variables measured by eye tracking,

indicative of the mechanical efficiency of reading, we found a

number of significant effects. Significant main effects favoring the

POD condition were observed in most eye tracking variables,

including speed (RATE), fixation count (FIX), and tracking errors

(TOT), and these are shown in Fig. 5. With the added variables, a

significant interaction of SW*Device is observed (see Table 4 and

Fig. 9), indicating that the speed advantage of POD over PAD is

more pronounced for those with high SW than for those with low

SW.

Figure 5. Short lines facilitate reading in dyslexia. When
comparing the POD and PAD conditions, reading in the POD condition
is faster (RATE), fixations are reduced (FIX), and the number of
inefficient saccades substantially lower (TOT). These gains are observed
at no cost to comprehension. (Error bars are +/21 s.e.)
doi:10.1371/journal.pone.0071161.g005

Table 4. Summary of additional analyses: Influence of variation within the sample.

Dependent Variable RATE FIX LEFT TOT

Effect Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value

Device 218.3532 0.3829 224.9336 ,.0001 226.3543 ,.0001 221.7398 ,.0001

Crowding 236.7951 0.0103 26.8898 ,.0001 20.1273 0.9262 20.1732 0.905

Hand 2.8915 0.3092 3.3127 0.4401 0.7349 0.5978 215.2919 0.0406

PD 2.008 0.0266 23.2714 0.0072 20.8358 0.0031

VAS 24.6432 0.6601 0.8574 0.8805

VAS*Hand 5.3656 0.018

VAS*Crowding 8.5659 0.0417

SW 1.4986 0.0418

SW*Device 0.6903 0.0086

Device: (1 = POD, 0 = PAD); Crowding: (1 = SPACED, 0 = NORMAL); Hand: (1 = HAND, 0 = NO HAND).
doi:10.1371/journal.pone.0071161.t004

Figure 6. Holding the device in the hand alters erratic reading
patterns. The observed interaction of Hand and global report (VAS) is
plotted for TOT, the number of fixations that depart from efficient
reading. A significant interaction of Hand*VAS was observed when TOT
was taken as the dependent variable. Here, the TOT is shown as a
function of VAS, the number of letters correctly identified on a six-letter
global report paradigm. The NO-HAND condition is indicated in red,
and HAND is indicated in blue. The figure shows that those with high
scores on the global report task make more TOT errors when the device
is held in the hand than when they do not hold it, while the reverse is
true for those with low scores. When the hand is placed in the lap,
variation in VAS makes little difference. (The colored shading indicates a
confidence interval for this interaction, defined by a +/21-sigma within-
subjects standard error of the mean [72]. The graph is based on the
POD and SPACED conditions.)
doi:10.1371/journal.pone.0071161.g006
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Not surprisingly, significant main effects of PD are also observed

(see Table 4). Those with high PD scores made fewer fixations,

exhibited fewer horizontal regressions, and read with greater

speed.

To summarize, the most salient of our findings provide strong

support for the hypothesis that the shortened lines used in POD

lead to more efficient oculomotor dynamics, compared with the

longer linewidths used in PAD.

Discussion

Hand: Holding e-readers in the Hand Regulates Reading
in those Most Impaired

Research shows that the hand alters the allocation of attention

during reading in ways that are complex, to benefit certain

functions, but hinder others [26–28]. Expected benefits of holding

an e-reader are to focus attention to detail [10], minimize

distractions [9], and thereby presumably improve single word

decoding and perhaps comprehension. On the other hand, given

that shifts in attention are slowed when objects are examined in

the hand [9], it is also possible that holding the e-reader would

slow attention shifts made during reading and introduce a cost in

reading speed (RATE) in our experiment. Though none of these

effects were observed in our experiment, we did find that use of the

hand interacted significantly with VAS in predicting TOT, the

total number of irregular gaze movements (unexpected saccades

made during reading in directions up, down, back, or off the page).

Those with poor VAS scores were better able to regulate their

oculomotor dynamics when the device was held in the hand, while

the opposite was true of those who had strong VAS scores (see

Fig. 6).

Low VAS in dyslexia has been characterized as a visual

attention span deficit [29,30], and is thought to reflect a

diminished sensitivity to the number of characters perceived at a

glance during reading. The global report task briefly flashes a

Figure 7. Extra letter spacing slows reading for those with low
VAS. Interaction of Crowding and global report (VAS) is plotted for
RATE, a measure of reading speed (see Fig. 4). A significant interaction
of Crowding*VAS was observed when RATE was taken as the
dependent variable. VAS is the number of letters correctly identified
on a six-letter global report paradigm. Letter spacing makes little
difference for those with high VAS scores. However, those with low VAS
scores read faster using normal spacing. This suggests that increased
letter spacing impedes oculomotor dynamics in readers likely to be
characterized as most impaired. (Confidence intervals indicated as in
Fig. 6). The graph is based on the POD and HAND conditions and
median values of the continuous variables not part of the interaction.)
doi:10.1371/journal.pone.0071161.g007

Table 5. Fidelity as dependent variable.

Main Effects Model Model with Interaction

Dependent Variable FIDELITY (higher = better) FIDELITY (higher = better)

Effect Coefficient OR p-value Coefficient OR p-value

Device (1 = POD, 0 = PAD) 0.6603 1.94 0.0507 0.6462 1.91 0.0624

Crowding (1 = SPACED, 0 = NORMAL) 1.1074 3.03 ,.0001 0.04471 (1.05) 0.8761

Hand (1 = HAND, 0 = NO-HAND) 0.2285 1.26 0.2561 0.1989 1.22 0.3287

High Reading (1 = yes, 0 = no) 2.0516 7.78 0.1404 2.774 (7.78) 0.0604

Crowding(1)*High Reading(0) 2.0841 (8.04) ,.0001

doi:10.1371/journal.pone.0071161.t005

Figure 8. Extra letter spacing improves comprehension in
those most impaired. The shape of the interaction of Crowding and
reading levels for FIDELITY, a measure of reading comprehension, is
plotted. A significant interaction of Crowding*High Reading was
observed when FIDELITY was taken as the dependent variable. Degree
of Reading Power (DRP) scores for each student, an a priori measure of
their overall reading level, was used to create a dummy variable (High
Reading) used to divide participants into high and low reading level
groups. Those with high reading levels read well with either spaced or
normal text, however, those most impaired read more effectively in the
spaced condition. (Error bars indicate +/21 s.e.)
doi:10.1371/journal.pone.0071161.g008
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string of widely-spaced letters at fixation and scores the number

identified, tapping into abilities to distribute attention over a span

of about 4u. However, by requiring participants to recall the letter

string, the task also invokes processes for working memory [31],

and letter naming [32], functionalities sometimes impaired in

dyslexia. And because no backward mask was used in our

implementation, iconic visual memory also plays a role in our

measure of VAS. (Given that the global report task presents letters

that are widely spaced, crowding plays less of a role in this task.)

Our observations suggest that when e-readers are held in the hand.

this regulates oculomotor dynamics in those with dyslexia whose

abilities for distributed attention (or perhaps other factors

implicated in this task) are impaired. The hand may shield

attention from visual interference [9] to improve distributed

attention used to guide oculomotor tracking in those with low

VAS. However, it is not immediately obvious why those with high

VAS might perform more poorly when the device is held, making

this an interesting question for future research.

Crowding: Increased Letter-spacing can Improve
Comprehension, but at a Cost

When we manipulated crowding by increasing the spacing

between characters, we reliably observed expected advantages of

letter spacing [14] for comprehension, but primarily in the readers

with dyslexia who were most impaired. While the stronger readers

had no difficulty with either spaced or normal text, for the weaker

readers, by contrast, spacing did make a difference. When the text

was spaced, comprehension among weaker readers was indistin-

guishable from that of the stronger readers, but when the spacing

was normal, the weaker readers performed worse.

In contrast, increased letter spacing failed to produce similar

benefits on the oculomotor variables. Observed main effects

(Table 2) indicate that students made more fixations (FIX) in the

SPACED than in the NORMAL condition, and the speed

advantages reported by [14] were not observed in our data. If

anything, students read more slowly when text was spaced (Fig. 7).

While spacing made little difference to those with high VAS

scores, those with low VAS scores read faster when text was

normally spaced. The only benefit of letter spacing we observe is

that the number of downward errors (inappropriate glances down

to text below the line currently read) is decreased. However, given

only about one percent of all fixations are downward errors (see

Table 2), this effect is of negligible importance in our study.

We speculate that the reason our study only partially

reproduced findings of [14] is that the nature of the format

manipulation differed in the two studies. In the prior experiments

of [14] letter spacing and line spacing were allowed to co-vary,

while in the present study, line spacing was held fixed, and only

letter spacing was altered in the Crowding condition. Further-

more, the prior study held margins fixed as letter spacing was

manipulated. This had the effect of altering linewidth (using our

definition of words per line), and introducing an important

confound with effects we find modulate oculomotor dynamics.

Thus, it is difficult to know from the prior study the degree to

which the advantages it reports are due to letter spacing, as

opposed to other effects. We infer from this that, while increased

letter spacing likely reduced reading errors in the previous study by

reducing inter-letter crowding, the improvements in speed they

report came primarily from the benefits of added line spacing and

decreased linewidth. Based findings we report here, we conclude

that while letter spacing may facilitate decoding of individual

words (and thus improve comprehension), it does not in itself

improve the efficiency of oculomotor dynamics in reading.

Device: Shorter Lines Reduce the Incidence of Regressive
Saccades

Overall, we find that reading using POD is significantly more

effective than using PAD in virtually all measures of reading

performance used. For example, comparing the variables FIX and

LEFT, as many as one in five saccades made during reading in the

PAD condition are regressive horizontal saccades (LEFT), directed

backwards in the line. However, in the POD condition, the

number of those inefficient saccades is cut in half. Furthermore,

almost every other significant measure of reading is improved.

Notably, the instantaneous reading rate (RATE) is faster by 27%

in the POD condition compared with PAD (see Fig. 5). These

improvements in oculomotor dynamics do not occur at the

expense of comprehension. If anything, marginally significant

advantages for reading fidelity are also associated with the POD

condition. The only exception, where PAD holds an advantage, is

that downward directed errors (DN) increase in the POD

condition. Though significant, given that these vertical events

represent only 6% of all tracking errors, they have only a marginal

influence on reading performance. When all tracking errors are

taken into account (TOT), the POD condition produces 40%

fewer such errors compared with the PAD. Therefore, the POD is

strongly advantageous.

The strong results favoring the POD condition are most readily

understood as a consequence of differences in the average number

of words displayed in a line (linewidth). In the POD the linewidth

is 2.19 words per line (wpl), displaying an average of 12.7

characters per line, while in the PAD condition the linewidth is

five-fold larger, at 11.6 wpl (67.2 characters per line). Previously,

eye tracking was used to investigate the effects of linewidth in

reading [33,34] and it was shown that, when linewidths of 18 wpl

are compared with those of 9 wpl, shorter lines tended to decrease

reading time, increase retention, and produce fewer regressive

saccades (eye movements backwards along a line). However, an

earlier eye tracking study [33] found that the benefit of shorter

lines breaks down when linewidths fall below an optimal

intermediate length. When long (23 wpl), intermediate (10 wpl),

and short (4 wpl) linewidths were compared, it was found that

Figure 9. Speed benefit of POD is more pronounced in those
with strong SW skills. Interaction of Device and Sight Word Efficiency
(SW) is plotted for RATE. Participants read faster on the POD than on the
PAD. As expected, those with high SW scores read faster than those
with poor sight word skills. However, the speed advantage of the POD
is more pronounced in those with high SW scores. (Confidence intervals
indicated as in Fig. 6.)
doi:10.1371/journal.pone.0071161.g009
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reading efficiency optimal for intermediate lengths. In contrast, in

our sample reading improved when lines were shortened from

12 wpl (PAD) to 2.1 wpl (POD). Given that the linewidths used in

the POD condition, advantageous here, fell far below the optimal

length observed in prior studies, we suggest that the observed

discrepancy is attributable to dyslexia in our sample.

To the best of our knowledge, linewidth has not been previously

studied in dyslexia. However, a well-known word length effect [35]

is observed in transparent orthographies, where vocal reaction

times to stimulus onset increase monotonically with greater word

length in dyslexia. This has been attributed to eccentricity

dependent deficits in crowding that would impair recognition of

longer words [36]. Given that linewidths used in the POD

condition approach single word reading (1 wpl), the advantages we

observe favoring shorter lines may be similarly related to an

abnormal response to crowding in dyslexia. This hypothesis is

discussed in more detail in the sections to follow.

Linewidths alter regression within lines, not between. It is a

puzzle why patterns of regression sometimes appear to be highly

regular, as if almost automatic, in some of our students with

dyslexia, and why such regressions are effectively controlled by

formatting manipulation (see Fig. 2). In dyslexia, the incidence of

regressive saccades can be higher by a factor of two [37]. Because

we observe that the incidence of regression is strongly controlled

by manipulating linewidth, we consider this effect in greater detail.

At first blush, it may not seem surprising that the narrow

formats control horizontal regressions, because it is obvious that,

as formats are narrowed, the probability that a previously fixated

word will occur on any given line will decrease, providing fewer

targets for regression on the line. In other words, as the lines

become short, the chance of regressing horizontally to a previously

encountered word on a line decreases. For the PAD condition the

probability a word can be found immediately to the left is 91%,

but it is only 54% for the POD. And referring to Table 3, the

incidence of horizontal regression is (LEFT/FIX) is 19% for PAD,

and 9% for POD, a ratio roughly proportional to the probability

determined by linewidth. Thus, indeed, the incidence of horizontal

regression appears to roughly scale with the linewidth, as expected.

However, another consequence of breaking the text into short

lines is that, when formats are narrowed, opportunities for re-

inspection across line boundaries increase. Readers normally issue

regressive saccades to clarify meaning, or otherwise address lapses

in understanding, and we would expect that formatting manipu-

lations would not alter the incidence of regressive saccades, driven

by such demands of lexical analysis. Therefore, an increased

number of vertical regressions in POD is expected to be the price

to be paid for the decreased number of horizontal regressions in

that condition. Yet this is not observed (see Fig. 10). Though the

incidence of horizontal regressions drops by a factor of two, from

19% for PAD to 9% for POD, the incidence of upward saccades in

POD does not scale up to make up this difference. Although the

incidence of upward-directed saccades does indeed increase from

3% for PAD to 4% for POD, this difference is an order of

magnitude short of what would be expected if the regressions were

driven primarily by lexical analysis and thus would bridge across

lines. Therefore, while the decrease, from PAD to POD, in the

incidence of leftward saccades can be almost entirely explained by

the change in linewidth, the lack of an associated increase in

vertical saccades cannot be explained unless the phenomenon

driving the regression is something local to the fixated word that

acts horizontally within a line. Our data suggest, furthermore, that

even if local, the dominant mechanism for regression is less likely a

consequence of decoding issues at the site of the fixated word. We

believe this to be the case because, when reading in the POD

condition, regression drops by a factor of two, at no cost to

comprehension (comprehension is observed to marginally im-

prove). Given that readers often regress to correct for lapses in

understanding, and thus clarify meaning, we would expect

comprehension to suffer if a text manipulation caused regression

rates to drop. The fact that this does not occur further suggests that

shortened linewidths act to limit confusion at the sight of the

fixated word. Based on the forgoing, we suggest that a possible

explanation, consistent with the observations in this study, is that

short lines act to improve comprehension at the fixation site by

reducing the likelihood that a previously fixated word can be

found immediately adjacent to the fixation site. We explore this

suggestion further, in the context of the literature, in the section

below.

Do Deficits in Attention and Crowding Collude to Drive
Regression?

If, as suggested above, the seemingly automatic generation of

horizontal regression we observe (see Fig. 2) is not caused by

higher-order lapses in sense-making, what then could drive such

patterns of regression that can be controlled by the use of short

lines? Given that these regressions are largely horizontal and only

rarely breach lines, an oculomotor explanation tied to the

direction of reading must be considered. While our data do not

speak directly to this question, in this section we turn to the

literature to proffer a speculative account meant to generate

plausible hypotheses that can motivate future research.

(a) Good readers maintain attention on the uncrowded

span as the gaze shifts in reading. Reading speed is

fundamentally limited by the visual span, defined as the number

of characters able to be accurately perceived at a glance [38]. It

has been shown that the visual span is in turn determined by

crowding, and thus equivalent to the number of characters in the

uncrowded span [39]. Furthermore, crowding is isotropic about

fixation, once the moderating effects of attention are taken into

Figure 10. Lapses in high level lexical processing rarely cause
regression. There are twice as many horizontal regressions (LEFT) in
PAD as in POD. If the mechanism for regression was entirely due to
lapses in conceptual understanding, we would expect regressions made
horizontally to trade off against regressions made upwards (UP), as
margins are made narrow in the POD condition. And yet, this expected
tradeoff is not observed. Narrowed columns halve the number of
horizontal regressions, but hardly increase the number of regressions
upward. This indicates that the mechanism for regression is restricted to
the line, and is likely proximal to fixation. (Error bars are +/21 s.e.)
doi:10.1371/journal.pone.0071161.g010
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account [40,41], so the uncrowded span is expected to be yoked to

fixation as the gaze advances during reading.

Presumably strong readers are able to maintain attention to the

uncrowded span as the gaze shifts during reading. Whether or not

this is the case in dyslexia is not known. One of the few extant

examples of research that speak to this question comes from a case

study of an individual with ‘‘selective attentional dyslexia’’ [42]. In

this study, a gaze-contingent display was used to replace letters

with X’s outside a span of characters centered on fixation during

reading (see Fig. 11). The individual with dyslexia in this case study

was ordinarily a very slow reader. Remarkably, when reading

using a window of 15 characters centered on fixation, this person

was able to read at normal rates. However, when random

characters were used to mask letters outside this window, the

person with dyslexia read very poorly compared to the controls.

We interpret these observations to suggest that this individual

ordinarily read poorly because he was unable to maintain

attention to the uncrowded span as the gaze advanced. Only

when the uncrowded span was artificially delineated using X’s was

the person able to read at normal speeds. When random

characters demarcated the uncrowded span, the person was

unable to reject these irrelevant peripheral letters and attend to the

uncrowded span centered at fixation.

(b) Good readers reject previously read text located to the

left of fixation. Using gaze-contingent paradigms it has been

shown that, in typical readers, the available perceptual span used

during reading is asymmetric, extending a few letters to the left of

fixation, but as many as 15 letters toward the right [43–45]. Even

though crowding typically makes it difficult to discern text further

than about seven letters from fixation [39], text perceived in the

parafovea, to the right of fixation, provides word shape and other

information that provides a preview benefit used in reading [46].

On the other hand, text located to the left of fixation, in fields

previously fixated, serves no practical purpose in normal reading

[43]. Despite this, there is evidence that typical readers neverthe-

less attend to the text located to the left [47–49]. Evidence for this

comes from gaze contingent boundary change paradigms used to

alter words left of the fixation target in mid-saccade. In one such

experiment [48], researchers found that in cases where readers

skipped the altered word, they regressed to the skipped word more

often when this word was manipulated so as to cause a conflict

with expected meaning, demonstrating that attention is allocated

left of fixation in normal reading. Other experiments [49] similarly

manipulated words to the right and left of the fixation target and

found that the processing of orthographic information to the right

and left of a fixated target is functionally independent. Further-

more, in cases where regressive saccades are issued, the perceptual

span used in reading is observed to change, so as to include

information further to the left, immediately prior to the onset of a

regressive saccade [50]. Thus, though attention directed to the

right of fixation ordinarily serves to guide eye movements and

otherwise provide a preview benefit in reading, people also

independently attend to the text left of fixation. Moreover, though

attention is spatially biased in the forward direction [43–45], to

reject perception of text previously read, people are able to spread

their attention further to the left in cases where regression is

warranted.

(c) The allocation of attention to the left and right differs

in dyslexia. There is considerable evidence suggesting that

attention is lateralized differently in dyslexia (e.g., [51–59]).

Therefore, it is natural to assume that the balance of attention

allocated to the left and right of fixation during normal reading

will be biased differently, as well. For example, when words are

flashed on either side of fixation, while typical readers show a well-

studied bias for word recognition favoring the right visual field, this

bias has been observed to reverse in dyslexia [56], implying greater

sensitivity to text located to the left. Furthermore, given that

attention shifting is sluggish in dyslexia [13,60–63], such a bias will

be exaggerated by the dynamics of reading. In this case, as the

gaze advances from one word to the next, attention will be slow to

disengage from previously fixated words, left of fixation, enhancing

their perception. (see Fig. 12). Thus, normal attentional processes

that allow perception of words to the left of fixation during reading

Figure 11. A case study of ‘‘selective attentional dyslexia’’ from
Rayner, et al., 1989. A gaze-contingent display was used to mask
letters on either side of fixation. When the mask was composed of X’s
(blue) the person with dyslexia (solid line) outperformed typical reading
controls (dashed line), reading as if unimpaired when the window size
was 15 characters. But, when the window was formed by randomly
replacing letters (red), the dyslexic individual performed poorly. We
interpret this to suggest that the individual with dyslexia was unable to
maintain attention on the ‘‘uncrowded span’’ [39] as the gaze advanced
during reading, unless it was clearly demarcated using X’s in a gaze
contingent display. When this was done, the person could read at near
normal rates. (Data from [42].)
doi:10.1371/journal.pone.0071161.g011

Figure 12. Schematic illustration of effects of attention and
crowding in effective and ineffective readers. In typical readers,
attention (grey oval) is primarily directed to the direction of reading, to
provide a parafoveal preview benefit, and reduce attention to words
previously inspected. In dyslexia, we propose that sluggish attention
shifting causes attention to be slow to disengage from previously
fixated locations, effectively spreading attention to the left of the
fixated word. Given that crowding (indicated with stippling) is more
severe in dyslexia, text perceived to the left is likely to be misperceived,
increasing the potential for confusion.
doi:10.1371/journal.pone.0071161.g012
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[47–49] are expected to be exaggerated by the dynamics of

reading in people who exhibit sluggish attention.

(d) Previously fixated words become crowded when the

gaze shifts during reading. Much of the research on crowding

has been done at fixation, and less is known about the influence of

eye movements on this process. When eye movements are

considered, it has been shown that in preparation for a saccade,

object discrimination in peripheral vision is effectively enhanced at

the crowded target, beginning as early as about 50 ms before a

saccade is issued in the direction of this object [64]. Therefore, we

can expect that as the gaze advances from one word to the next

during normal reading, crowding at the site of the target word is

rapidly diminished in advance of the saccade. However, once the

previously fixated word falls to the periphery, given that crowding

increases with eccentricity [65], the previously fixated word will

become crowded. Crowding will therefore abruptly alter the

orthographic percept of the previously fixated word so as to make

this word difficult to discern. To the extent that typical readers

attend to words to the left during normal reading, such words will

necessarily be affected by peripheral crowding. Therefore, if

crowding is more severe in dyslexia, as is reported [14–16,36,66],

and/or sensitivity to previously fixated sites is greater in dyslexia

(as we speculate above), we would expect such effects of crowding

to be exaggerated in dyslexia.

(e) Does perception of crowding on the left induce

regression?. If a change in percept due to crowding in a

previously fixated word causes readers to doubt their prior

interpretation, a regressive saccade may be issued to clarify

meaning (see Fig. 13), in a process we term ‘‘crowding induced

regression’’ (CIR). We suggest that typical readers, who have a

strong command of attention, are able to inhibit CIR by casting

their perceptual span forward during reading [43]. However, for

those with sluggish attention deficits, crowded words to the left of

fixation are more strongly attended, increasing the incidence of

CIR. This issue is further compounded in those for whom

crowding is severe [14–16,36]. We speculate that this mechanism

is responsible for the seemingly automatic patterns of regression

seen in some people with dyslexia, where regressions occur

approximately once every three fixations (see Fig. 2).

In this framework, short lines reduce the number of regressions,

and generally improve reading speed and comprehension, simply

by reducing the probability that crowded text in locations

previously fixated can be perceived (see Fig. 14). Given that CIR

regressions are issued to clarify meaning, the extent to which

diminished linewidth will enhance reading will vary depending on

the reader’s familiarity with the text. Though aspects of this

interpretation are undoubtedly speculative, this raises a number of

interesting hypotheses, and these need to be investigated through

future research (see Conclusions).

Other Considerations
Inhibition of return. Could the findings be alternatively

explained by deficits for inhibition of return (IOR) in dyslexia?

IOR is a phenomenon in which saccades generated to targets at

previously attended locations are delayed [67]. When measured

at fixation, using covert exogenous orienting paradigms, IOR

response has been shown to be impaired in dyslexia [53]. A

prediction of this finding is that while those exhibiting a robust

IOR response would be slow to re-inspect previously fixated

text, those with poor IOR response would not show this

inhibition, and thus be more likely to rapidly issue a regressive

saccade toward words immediately to the left of the current

fixation. This suggestion is supported by evidence showing that

those with weakly developed IOR generate shorter regressive

saccades than those who exhibit a strong IOR response [68].

Thus, the IOR account can successfully explain why short

regressions (such as those seen in Fig. 2) are suppressed in

typical readers, but not in those with dyslexia. However, while

Figure 13. Proposed mechanism driving regression. During reading a short gaze shift is made from the word ‘‘severe’’ in the first fixation, to
‘‘dyslexia’’ in the second. We suggest that due to attention deficits, the word ‘‘severe,’’ left of fixation, is perceived even after the fixation has
advanced. However, because this word is now in the periphery, crowding alters its percept. If this sudden change in orthographic percept triggers a
cognitive dissonance that calls the word’s previous interpretation into doubt, this can encourage a regressive saccade to re-inspect the word. We
refer to this process as a ‘‘crowding induced regression (CIR).’’
doi:10.1371/journal.pone.0071161.g013
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the IOR explanation is consistent with the observations here, it

is difficult to understand how this mechanism alone can account

for them. In particular, while IOR explains why short

regressions are not inhibited in dyslexia, it says nothing about

what may cause the regression in the first place. As discussed

above, given that horizontal and vertical regressions are not

observed to trade off as linewidths are narrowed, the cause of

regression –controlled by the short linewidths– cannot be the

result of cognitive lapses (e.g., comprehension problems or

memory lapses). To explain this, a mechanism other than IOR

(such as CIR) is needed to generate the regressions.
Effects of letter spacing. If extra-large letter spacing

reduces crowding, would this also reduce the incidence of

CIR events? We would not expect this to be the case. Crowding

increases with eccentricity [15]. Therefore, a given letter spacing

chosen to just relieve crowding within the angular span of a

typical word when it is viewed at fixation, will be insufficient to

counteract crowding when this word is perceived in the

periphery. Therefore, letter spacing does little to prevent CIR

events. Indeed, this is what is observed (Table 5). If anything,

spacing introduces oculomotor costs: it significantly slows

reading by increasing the number of fixations (Table 2; RATE

and FIX).

Conclusions
A number of questions remain unresolved, suggesting further

research. An interesting question is whether the advantages of

short lines found here in a sample of students with dyslexia,

carry over to typical readers. Given that we observe that within-

subjects characteristics modulate the observed effects, we would

expect such would be the case. This question is especially

important in view of our proposal that sluggish attention shifting

enhances attention to the left as the gaze advances. Experiments

are needed to investigate this in greater detail, using gaze

contingent paradigms similar to those of [42], characterizing

those with and without attention deficits. In addition, care is

needed to resolve confounds of letter spacing, line spacing, and

linewidth in relation to the observed effects. Because we expect

incidence of regression to scale in proportion to the number of

words per line, it would be informative to test this effect at a

variety of linewidths. Lastly, the allocation of attention, as well

as the effects of crowding, traditionally investigated at fixation,

needs to be reconsidered under conditions that better simulate

the dynamics of reading. A strong test of our hypotheses would

use a paradigm analogous to [69] to investigate attention and

crowding in dyslexia under conditions of gaze motion.

While reformatting the page significantly improves reading in

those with dyslexia, we emphasize that this alone cannot address

all of the factors known to impede reading in this disorder.

Altering spatial formatting can only partially alleviate factors

affecting the temporal dynamics in reading such as slowness

caused by sluggish attention shifting [60], difficulties accessing

phonological representations of words [70], or latencies in

naming [32], each of which can act, independently of the effects

addressed here, to impair reading. Furthermore, given that

people’s reading characteristics vary [71], it is reasonable to

expect that the benefits of reformatting the page, will likely vary

with individuals, as is observed here.

In conclusion, we note that in the century since dyslexia was

first described, methods used for reading have undergone very

little revision. However, with the widespread adoption of e-

readers and other digital technologies, reading methods are

rapidly evolving, and this offers an opportunity to reverse

historically imposed constraints on reading, whose impetus was

driven largely by technological limitations that are no longer

relevant. As this study demonstrates, even relatively minor

changes in the formatting and display of text, when done

incisively, can lead to significant improvements in reading

among those who otherwise struggle. The interactions found in

this study further suggest that different readers may benefit from

different reading formats and modalities. Here, the flexibility

afforded by e-readers provides a critical advantage: Electronic

text can easily adapt to the needs of individuals. Therefore, by

reinventing reading in this digital age, everyone may be able to

gain, and impairments in reading may cease to be a barrier for

many people with dyslexia.
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56. Bricout-Tomasi L, Billard C, Siéroff E (2010) Absence of right visual field

attentional bias in reading in dyslexic children. Behavioural Neurology 23: 189–

191. doi:10.3233/BEN-2010-0291.

57. Liddle EB, Jackson GM, Rorden C, Jackson SR (2009) Lateralized temporal

order judgement in dyslexia. Neuropsychologia 47: 3244–3254. doi:10.1016/

j.neuropsychologia.2009.08.007.

58. Wijers AA, Been PH, Romkes KS (2005) Dyslexics show a deviant lateralization

of attentional control: a brain potential study. Neurosci Lett 374: 87–91.

doi:10.1016/j.neulet.2004.10.072.

59. Buchholz J, Davies A (2005) Adults with dyslexia demonstrate space-based and

object-based covert attention deficits: Shifting attention to the periphery and

shifting attention between objects in the left visual field. Brain and Cognition 57:

30–34. doi:10.1016/j.bandc.2004.08.017.

60. Hari R, Renvall H (2001) Impaired processing of rapid stimulus sequences in

dyslexia. Trends Cogn Sci (Regul Ed) 5: 525–532.

61. Facoetti A, Lorusso M, Cattaneo C, Galli R, Molteni M (2005) Visual and

auditory attentional capture are both sluggish in children with developmental

dyslexia. Acta Neurobiologiae Experimentalis 65: 61–72.

62. Lum JAG, Conti-Ramsden G, Lindell AK (2007) The attentional blink reveals

sluggish attentional shifting in adolescents with specific language impairment.

Brain Cogn 63: 287–295. doi:10.1016/j.bandc.2006.09.010.

63. Lallier M, Tainturier M-J, Dering B, Donnadieu S, Valdois S, et al. (2010)

Behavioral and ERP evidence for amodal sluggish attentional shifting in

developmental dyslexia. Neuropsychologia 48: 4125–4135. doi:10.1016/j.neu-

ropsychologia.2010.09.027.

64. Harrison WJ, Mattingley JB, Remington RW (2013) Eye movement targets are

released from visual crowding. Journal of Neuroscience 33: 2927–2933.

doi:10.1523/JNEUROSCI.4172-12.2013.

65. Bouma H (1970) Interaction effects in parafoveal letter recognition. Nature 226:

177–178.

66. Spinelli D, De Luca M, Judica A, Zoccolotti P (2002) Crowding effects on word

identification in developmental dyslexia. Cortex 38: 179–200.

67. Ro T, Pratt J, Rafal R (2000) Inhibition of return in saccadic eye movements.

Experimental Brain Research 130: 264–268.

Short Lines Facilitate Dyslexia

PLOS ONE | www.plosone.org 15 August 2013 | Volume 8 | Issue 8 | e71161



68. Weger UW, Inhoff AW (2006) Attention and eye movements in reading:

inhibition of return predicts the size of regressive saccades. Psychol Sci 17: 187–

191. doi:10.1111/j.1467–9280.2006.01683.x.

69. Gersch TM, Kowler E, Schnitzer BS, Dosher BA (2009) Attention during

sequences of saccades along marked and memorized paths. Vision Research 49:

1256–1266. doi:10.1016/j.visres.2007.10.030.

70. Ramus F, Szenkovits G (2008) What phonological deficit? Q J Exp Psychol

(Colchester) 61: 129–141. doi:10.1080/17470210701508822.
71. Heim S, Tschierse J, Amunts K, Wilms M, Vossel S, et al. (2008) Cognitive

subtypes of dyslexia. Acta Neurobiologiae Experimentalis 68: 73–82.

72. Cousineau D (2005) Confidence intervals in within-subjects designs: a simpler
solution to Loftus and Masson’s method. Tutorial in Quantitative Methods for

Psychology 1: 42–45.

Short Lines Facilitate Dyslexia

PLOS ONE | www.plosone.org 16 August 2013 | Volume 8 | Issue 8 | e71161


