Note: Problems 1–7 are actually quite fundamental. They cover material that comes up again and again in discrete mathematics and ss used in practice in computer science. So really try to get used to this kind of reasoning—you will find it extremely useful.

1. Exercise 1.1 in the Lecture 7 handout.
2. Exercise 1.2 in the Lecture 7 handout.
3. Exercise 1.3 in the Lecture 7 handout.
4. Exercise 1.4 in the Lecture 7 handout.
5. Exercise 1.5 in the Lecture 7 handout.
6. Exercise 1.6 in the Lecture 7 handout.
7. Exercise 4.1 in the Lecture 7 handout.

Please be careful. This is an exercise about binary search trees, not about algorithms used to construct those trees. So all you can use in doing this problem is the definition of a binary search tree. If you write something like, “this can’t happen because the algorithm would have placed this element somewhere else”, then your reasoning can’t possibly be correct.

8. Prove that an inorder traversal of a binary search tree visits the nodes in increasing order of their keys. (Hint: use induction. The inductive hypothesis could be this: “For each binary search tree of height \(\leq n \) (where \(n \) is some fixed number), the inorder traversal of that tree visits the nodes in increasing order of their keys.”)

Show that the inductive hypothesis is true for \(n = 1 \). Then show that if it is true for some \(n \), it can be proved to be true for \(n + 1 \).